Increasing ion selective electrodes performance using neural networks

O. Postolache, P. Girão, M. Pereira, H. Ramos
{"title":"Increasing ion selective electrodes performance using neural networks","authors":"O. Postolache, P. Girão, M. Pereira, H. Ramos","doi":"10.1109/SFICON.2002.1159822","DOIUrl":null,"url":null,"abstract":"This paper reports the implementation of a neural processing structure as a component of an intelligent measuring system that uses ion selective electrodes (ISEs) as sensing elements of heavy metal ions (Pb/sup +2/, Cd/sup +2/) concentration. The neural network (NN), designed and implemented to reduce errors due to ion interference and to pH and temperature variations, is of the multiple-input multiple-output Multilayer Perception (MLP-NN) type The NN is a component of a virtual instrument that includes a PC laptop, a PCMCI data acquisition board with associated conditioning circuits and the specific ISE sensors. A practical approach concerning the optimal neural processing solution (number of NN structures, number of neurons, neuron transfer functions) to increase the performance of low cost ISEs is presented. Results are presented to evaluate the performance of the NN intelligent ISE system and to discuss the possibility of transferring the acquisition and processing task to a low cost acquisition and control unit such as a microcontroller.","PeriodicalId":294424,"journal":{"name":"2nd ISA/IEEE Sensors for Industry Conference,","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd ISA/IEEE Sensors for Industry Conference,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFICON.2002.1159822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper reports the implementation of a neural processing structure as a component of an intelligent measuring system that uses ion selective electrodes (ISEs) as sensing elements of heavy metal ions (Pb/sup +2/, Cd/sup +2/) concentration. The neural network (NN), designed and implemented to reduce errors due to ion interference and to pH and temperature variations, is of the multiple-input multiple-output Multilayer Perception (MLP-NN) type The NN is a component of a virtual instrument that includes a PC laptop, a PCMCI data acquisition board with associated conditioning circuits and the specific ISE sensors. A practical approach concerning the optimal neural processing solution (number of NN structures, number of neurons, neuron transfer functions) to increase the performance of low cost ISEs is presented. Results are presented to evaluate the performance of the NN intelligent ISE system and to discuss the possibility of transferring the acquisition and processing task to a low cost acquisition and control unit such as a microcontroller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络提高离子选择电极的性能
本文报道了一种神经处理结构作为智能测量系统的组成部分的实现,该系统使用离子选择电极(ISEs)作为重金属离子(Pb/sup +2/, Cd/sup +2/)浓度的传感元件。神经网络(NN)的设计和实现是为了减少由于离子干扰和pH值和温度变化引起的误差,是多输入多输出多层感知(MLP-NN)类型的神经网络是虚拟仪器的一个组成部分,包括一台PC笔记本电脑,一个PCMCI数据采集板与相关的调理电路和特定的ISE传感器。提出了一种实用的方法,通过优化神经处理解(神经网络结构数、神经元数、神经元传递函数)来提高低成本人工智能的性能。研究结果评估了神经网络智能ISE系统的性能,并讨论了将采集和处理任务转移到低成本采集和控制单元(如微控制器)的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IEEE 1588 standard for a precision clock synchronization protocol for networked measurement and control systems Design of a MEMS-based, 3-axis accelerometer smart sensor An implementation of IEEE 1451 NCAP for Internet access of serial port-based sensors A networked smart sensor system for gripper of robots Laser sensor for imaging and detection of cutting tool wear
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1