A statistical image-based approach for the 3D reconstruction of the scoliotic spine from biplanar radiographs

S. Kadoury, F. Cheriet, H. Labelle
{"title":"A statistical image-based approach for the 3D reconstruction of the scoliotic spine from biplanar radiographs","authors":"S. Kadoury, F. Cheriet, H. Labelle","doi":"10.1109/ISBI.2008.4541082","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hybrid approach using a statistical 3D model of the spine generated from a database of 732 scoliotic patients with high-level anatomical primitives identified and matched on biplanar radiographic images for the three-dimensional reconstruction of the scoliotic spine. The 3D scoliotic curve reconstructed from a coronal and sagittal radiograph is used to generate an approximate statistical model based on a transformation algorithm which incorporates intuitive geometrical properties. An iterative optimization procedure integrating similarity measures such as deformable vertebral contours and epipolar constraints is then applied to globally refine the 3D anatomical landmarks on each vertebra level of the spine. A qualitative evaluation of the retro-projection of the vertebral contours obtained from the proposed method gave promising results while the quantitative comparison yield similar accuracy on the localization of low-level primitives such as the six landmarks identified by an expert on each vertebra.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"10 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we propose a hybrid approach using a statistical 3D model of the spine generated from a database of 732 scoliotic patients with high-level anatomical primitives identified and matched on biplanar radiographic images for the three-dimensional reconstruction of the scoliotic spine. The 3D scoliotic curve reconstructed from a coronal and sagittal radiograph is used to generate an approximate statistical model based on a transformation algorithm which incorporates intuitive geometrical properties. An iterative optimization procedure integrating similarity measures such as deformable vertebral contours and epipolar constraints is then applied to globally refine the 3D anatomical landmarks on each vertebra level of the spine. A qualitative evaluation of the retro-projection of the vertebral contours obtained from the proposed method gave promising results while the quantitative comparison yield similar accuracy on the localization of low-level primitives such as the six landmarks identified by an expert on each vertebra.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计图像的方法从双平面x线片对脊柱侧凸进行三维重建
在本文中,我们提出了一种混合方法,使用从732名脊柱侧凸患者的数据库中生成的脊柱统计3D模型,并在双平面放射图像上识别和匹配高水平解剖基元,用于脊柱侧凸的三维重建。利用冠状位和矢状位x线片重建的三维脊柱侧弯曲线,基于结合直观几何特性的变换算法生成近似统计模型。然后应用迭代优化程序集成相似性度量(如可变形的椎体轮廓和极外约束)来全局细化脊柱每个椎体水平上的3D解剖标志。从所提出的方法中获得的椎体轮廓的反向投影的定性评估给出了有希望的结果,而定量比较在低级原语(如专家在每个椎体上识别的六个地标)的定位上产生了类似的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1