Adaptive optimal tracking control for a class of nonlinear systems with fully unknown parameters

H. Mohammadi, Hamid Shiri
{"title":"Adaptive optimal tracking control for a class of nonlinear systems with fully unknown parameters","authors":"H. Mohammadi, Hamid Shiri","doi":"10.1109/ICCIAUTOM.2017.8258703","DOIUrl":null,"url":null,"abstract":"In this paper, a new adaptive optimal tracking approximate solution for the infinite-horizon function is presented to design a new controller for a class of fully unknown continuous-times nonlinear systems. A dynamic neural network identifier (DNN) derived from a Lyapunov function, is achieved to approximate the unknown system dynamics. We utilize an adaptive steady-state controller based on the identified plant to keep tracking performance and an adaptive optimal controller is used to stabilize the systems. A critic neural network is utilized for estimating optimal value function of the Hamilton-Jacobi-Bellman (HJB). The simulation examples are presented to confirm the effectiveness of the proposed controller method.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new adaptive optimal tracking approximate solution for the infinite-horizon function is presented to design a new controller for a class of fully unknown continuous-times nonlinear systems. A dynamic neural network identifier (DNN) derived from a Lyapunov function, is achieved to approximate the unknown system dynamics. We utilize an adaptive steady-state controller based on the identified plant to keep tracking performance and an adaptive optimal controller is used to stabilize the systems. A critic neural network is utilized for estimating optimal value function of the Hamilton-Jacobi-Bellman (HJB). The simulation examples are presented to confirm the effectiveness of the proposed controller method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类参数完全未知非线性系统的自适应最优跟踪控制
针对一类完全未知连续时间非线性系统,提出了一种新的自适应最优跟踪逼近解。利用李雅普诺夫函数实现了一种动态神经网络辨识器(DNN)来逼近未知的系统动态。我们利用基于被识别对象的自适应稳态控制器来保持跟踪性能,并使用自适应最优控制器来稳定系统。利用评价神经网络估计Hamilton-Jacobi-Bellman (HJB)的最优值函数。仿真实例验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete linear quadratic control of uncertain switched system Fractional order adaptive fuzzy terminal sliding mode controller design for a knee joint orthosis with nonlinear disturbance observer Kalman filter based sensor fault detection and identification in an electro-pump system Comparison of iterative and recursive algorithms for identifying a solar power plant system State estimation of VTOL octorotor for altitude control by using hybrid extended Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1