Global Optimization by Generalized Random Tunneling Algorithm (4th Report Application to the Nonlinear Optimum Design Problem of the Mixed Design Variables)

S. Kitayama, K. Yamazaki
{"title":"Global Optimization by Generalized Random Tunneling Algorithm (4th Report Application to the Nonlinear Optimum Design Problem of the Mixed Design Variables)","authors":"S. Kitayama, K. Yamazaki","doi":"10.1299/JCST.2.258","DOIUrl":null,"url":null,"abstract":"This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random Tunneling Algorithm (MGRTA). By handling the discrete design variables as penalty function, the augmented objective function is constructed. As a result, all design variables can be treated as the continuous design variables. The augmented objective function becomes non-convex, and has many local minima. That is, finding optimum of discrete design variables is transformed into finding global optimum of this augmented objective function. Then the MGRTA is applied to this augmented objective function, subject to the behavior and side constraints. We also propose the new update scheme of penalty parameter for the penalty function of discrete design variables in this paper. The proposed update scheme of penalty parameter utilizes the information of the penalty function value of discrete design variables. By utilizing the characteristics of MGRTA, some optima are obtained. The validity of the proposed method is examined through typical benchmark problems.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.2.258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random Tunneling Algorithm (MGRTA). By handling the discrete design variables as penalty function, the augmented objective function is constructed. As a result, all design variables can be treated as the continuous design variables. The augmented objective function becomes non-convex, and has many local minima. That is, finding optimum of discrete design variables is transformed into finding global optimum of this augmented objective function. Then the MGRTA is applied to this augmented objective function, subject to the behavior and side constraints. We also propose the new update scheme of penalty parameter for the penalty function of discrete design variables in this paper. The proposed update scheme of penalty parameter utilizes the information of the penalty function value of discrete design variables. By utilizing the characteristics of MGRTA, some optima are obtained. The validity of the proposed method is examined through typical benchmark problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义随机隧道算法的全局优化(第四次报告在混合设计变量非线性优化设计问题中的应用)
本文提出了一种基于改进广义随机隧道算法(MGRTA)的离散和连续设计变量的全局或拟最优解求解方法。将离散设计变量作为惩罚函数处理,构造增广目标函数。因此,所有的设计变量都可以看作是连续的设计变量。增广后的目标函数变得非凸,并且具有许多局部极小值。即将离散设计变量的最优求转化为增广目标函数的全局最优求。然后在行为约束和侧约束条件下,将MGRTA应用于该增广目标函数。本文还对离散设计变量的惩罚函数提出了新的惩罚参数更新方案。提出的惩罚参数更新方案利用了离散设计变量的惩罚函数值信息。利用MGRTA的特性,得到了一些最优解。通过典型的基准问题验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Optimization of a Gas Burner for TPV Application Experimental and Numerical Approaches for Reliability Evaluation of Electronic Packaging Two-Layer Viscous Shallow-Water Equations and Conservation Laws Lattice Boltzmann Simulation of Two-Phase Viscoelastic Fluid Flows An Inexact Balancing Preconditioner for Large-Scale Structural Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1