Mohammad Javad Karimi, Yuxuan Zhou, C. Dehollain, A. Schmid
{"title":"Simultaneous Wireless Power and Data Transmission Through a Single Inductive Link For Multiple Implantable Medical Devices","authors":"Mohammad Javad Karimi, Yuxuan Zhou, C. Dehollain, A. Schmid","doi":"10.1109/prime55000.2022.9816782","DOIUrl":null,"url":null,"abstract":"Inductive power transfer (IPT) is a developing technique for wireless power and data communication systems in the application of implanted medical devices (IMDs). Multiple implants are developed to cover large areas and satisfy the clinical requirements of distributed and long-term biological data acquisition or treatment. In this paper, an analysis of wirelessly-powered implants is proposed to efficiently provide the required power to send and receive data from multiple implants to the external unit. The concept of using different operation frequencies for each implant is also presented, while data transmission employs amplitude and load shift keying (ASK and LSK) for forward and backward telemetry, respectively.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Inductive power transfer (IPT) is a developing technique for wireless power and data communication systems in the application of implanted medical devices (IMDs). Multiple implants are developed to cover large areas and satisfy the clinical requirements of distributed and long-term biological data acquisition or treatment. In this paper, an analysis of wirelessly-powered implants is proposed to efficiently provide the required power to send and receive data from multiple implants to the external unit. The concept of using different operation frequencies for each implant is also presented, while data transmission employs amplitude and load shift keying (ASK and LSK) for forward and backward telemetry, respectively.