GANDALF: Peptide Generation for Drug Design using Sequential and Structural Generative Adversarial Networks

Allison M. Rossetto, Wenjin Zhou
{"title":"GANDALF: Peptide Generation for Drug Design using Sequential and Structural Generative Adversarial Networks","authors":"Allison M. Rossetto, Wenjin Zhou","doi":"10.1145/3388440.3412487","DOIUrl":null,"url":null,"abstract":"Computational drug design has the potential to save time and money by providing a better starting point for new drugs with a complete computational evaluation. We propose a peptide design system for protein targets based on a Generative Adversarial Network (GAN) called GANDALF (Generative Adversarial Network Drug-tArget Ligand Fructifier). GAN based methods have been developed for computational drug design but these can only generate small molecules, not peptides. Peptides are very complex macromolecules which makes them much more difficult than small molecules to generate. Our GANDALF methodology uses two networks to generate a new peptide sequence and structure. It also incorporates data such as active atoms not used in other methods. Active atoms are important because they interact via electron sharing when a target protein and a peptide bind to each other. We can identify the active atoms using our electron structure calculation (eCADD) program and the rules of interaction we have developed. Our method goes farther than comparable methods by generating a full peptide structure as well as predicting binding affinity. The results were validated using a multi-step process comparing the results with FDA approved drugs and our initial prototype method. We have generated multiple peptides for three targets of interest (PD-1, PDL-1, and CTLA-4) and have found that the best generated peptide for each target was comparable to the FDA approved drugs in binding affinity and fitness of 3D binding as well as show the generated peptides were unique from the existing FDA drugs.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3412487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Computational drug design has the potential to save time and money by providing a better starting point for new drugs with a complete computational evaluation. We propose a peptide design system for protein targets based on a Generative Adversarial Network (GAN) called GANDALF (Generative Adversarial Network Drug-tArget Ligand Fructifier). GAN based methods have been developed for computational drug design but these can only generate small molecules, not peptides. Peptides are very complex macromolecules which makes them much more difficult than small molecules to generate. Our GANDALF methodology uses two networks to generate a new peptide sequence and structure. It also incorporates data such as active atoms not used in other methods. Active atoms are important because they interact via electron sharing when a target protein and a peptide bind to each other. We can identify the active atoms using our electron structure calculation (eCADD) program and the rules of interaction we have developed. Our method goes farther than comparable methods by generating a full peptide structure as well as predicting binding affinity. The results were validated using a multi-step process comparing the results with FDA approved drugs and our initial prototype method. We have generated multiple peptides for three targets of interest (PD-1, PDL-1, and CTLA-4) and have found that the best generated peptide for each target was comparable to the FDA approved drugs in binding affinity and fitness of 3D binding as well as show the generated peptides were unique from the existing FDA drugs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甘道夫:使用序列和结构生成对抗网络进行药物设计的肽生成
通过完整的计算评估为新药提供更好的起点,计算药物设计具有节省时间和金钱的潜力。我们提出了一种基于生成式对抗网络(GAN)的蛋白质靶标肽设计系统,称为GANDALF(生成式对抗网络药物靶配体果子)。基于GAN的方法已经开发用于计算药物设计,但这些方法只能产生小分子,而不是肽。肽是非常复杂的大分子,这使得它们比小分子更难生成。我们的GANDALF方法使用两个网络来生成新的肽序列和结构。它还包含了其他方法中未使用的活性原子等数据。活性原子很重要,因为当目标蛋白和肽相互结合时,它们通过电子共享相互作用。我们可以利用我们的电子结构计算(eCADD)程序和我们开发的相互作用规则来识别活性原子。我们的方法通过生成完整的肽结构以及预测结合亲和力,比同类方法走得更远。通过将结果与FDA批准的药物和我们最初的原型方法进行比较,通过多步骤过程验证了结果。我们已经为三个感兴趣的靶点(PD-1, PDL-1和CTLA-4)生成了多个多肽,并发现每个靶点生成的最佳多肽在结合亲和力和3D结合适应度方面与FDA批准的药物相当,并且显示生成的多肽与现有的FDA药物是独一无二的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RA2Vec CanMod From Interatomic Distances to Protein Tertiary Structures with a Deep Convolutional Neural Network Prediction of Large for Gestational Age Infants in Overweight and Obese Women at Approximately 20 Gestational Weeks Using Patient Information for the Prediction of Caregiver Burden in Amyotrophic Lateral Sclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1