Automatic grading of diabetic maculopathy severity levels

P. Siddalingaswamy, K. G. Prabhu
{"title":"Automatic grading of diabetic maculopathy severity levels","authors":"P. Siddalingaswamy, K. G. Prabhu","doi":"10.1109/ICSMB.2010.5735398","DOIUrl":null,"url":null,"abstract":"Diabetic maculopathy is the major cause of irreversible vision loss due to retinopathy and is found in 10% of the world diabetic population. Compulsory mass screening will help to identify the maculopathy at early stage and reduce the risk of severe vision loss. In this paper, we present a computer based system for automatic detection and grading of diabetic maculopathy severity level without manual intervention. The optic disc is detected automatically and its location and diameter is used to detect fovea and to mark the macular region respectively. Next, hard exudates are detected using clustering and mathematical morphological techniques. Based on the location of exudates in marked macular region the severity level of maculopathy is classified into mild, moderate and severe. The method achieves a sensitivity of 95.6% and specificity of 96.15% with 148 retinal images for detecting maculopathy stages in fundus images as comparable to that of human expert.","PeriodicalId":297136,"journal":{"name":"2010 International Conference on Systems in Medicine and Biology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Systems in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMB.2010.5735398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

Diabetic maculopathy is the major cause of irreversible vision loss due to retinopathy and is found in 10% of the world diabetic population. Compulsory mass screening will help to identify the maculopathy at early stage and reduce the risk of severe vision loss. In this paper, we present a computer based system for automatic detection and grading of diabetic maculopathy severity level without manual intervention. The optic disc is detected automatically and its location and diameter is used to detect fovea and to mark the macular region respectively. Next, hard exudates are detected using clustering and mathematical morphological techniques. Based on the location of exudates in marked macular region the severity level of maculopathy is classified into mild, moderate and severe. The method achieves a sensitivity of 95.6% and specificity of 96.15% with 148 retinal images for detecting maculopathy stages in fundus images as comparable to that of human expert.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖尿病黄斑病变严重程度的自动分级
糖尿病性黄斑病变是由视网膜病变引起的不可逆视力丧失的主要原因,占世界糖尿病人口的10%。强制性的大规模筛查有助于在早期发现黄斑病变,降低严重视力丧失的风险。在本文中,我们提出了一个基于计算机的系统,用于糖尿病黄斑病变严重程度的自动检测和分级,无需人工干预。自动检测视盘,利用视盘的位置和直径分别检测中央凹和标记黄斑区。接下来,使用聚类和数学形态学技术检测硬渗出物。根据黄斑区渗出物的位置,将黄斑病变的严重程度分为轻度、中度和重度。该方法对148张视网膜图像中黄斑病变分期的检测灵敏度为95.6%,特异度为96.15%,与人类专家的检测结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alpha-amylase activity of tannin isolated from Terminalia chebula Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data Implementation of Katsevich algorithm for helical cone-beam computed tomography using CORDIC Color-image processing: An introduction with some medical application-examples Knee joint cartilage visualization and quantification in normal and osteoarthritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1