Jing Zhao, Will Zhao, Yimin Yang, A. Safaei, Ruizhong Wei
{"title":"To Mask or Not To Mask? A Machine Learning Approach to Covid News Coverage Attitude Prediction Based on Time Series and Text Content","authors":"Jing Zhao, Will Zhao, Yimin Yang, A. Safaei, Ruizhong Wei","doi":"10.1109/CSE57773.2022.00018","DOIUrl":null,"url":null,"abstract":"In the past few decades, with the explosion of information, a large number of computer scientists have devoted themselves to analyzing collected data and applying these findings to many disciplines. Natural language processing (NLP) has been one of the most popular areas for data analysis and pattern recognition. A significantly large amount of data is obtained in text format due to the ease of access nowadays. Most modern techniques focus on exploring large sets of textual data to build forecasting models; they tend to ignore the importance of temporal information which is often the main ingredient to determine the performance of analysis, especially in the public policy view. The contribution of this paper is two-fold. First, a dataset called COVID-News is collected from three news agencies, which consists of article segments related to wearing masks during the COVID-19 pandemic. Second, we propose a long-short term memory (LSTM)-based learning model to predict the attitude of the articles from the three news agencies towards wearing a mask with both temporal and textural information. Experimental results on COVID-News dataset show the effectiveness of the proposed LSTM-based algorithm.","PeriodicalId":165085,"journal":{"name":"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE57773.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the past few decades, with the explosion of information, a large number of computer scientists have devoted themselves to analyzing collected data and applying these findings to many disciplines. Natural language processing (NLP) has been one of the most popular areas for data analysis and pattern recognition. A significantly large amount of data is obtained in text format due to the ease of access nowadays. Most modern techniques focus on exploring large sets of textual data to build forecasting models; they tend to ignore the importance of temporal information which is often the main ingredient to determine the performance of analysis, especially in the public policy view. The contribution of this paper is two-fold. First, a dataset called COVID-News is collected from three news agencies, which consists of article segments related to wearing masks during the COVID-19 pandemic. Second, we propose a long-short term memory (LSTM)-based learning model to predict the attitude of the articles from the three news agencies towards wearing a mask with both temporal and textural information. Experimental results on COVID-News dataset show the effectiveness of the proposed LSTM-based algorithm.