The SABER system for window-based hybrid stream processing with GPGPUs: demo

A. Koliousis, M. Weidlich, R. Fernandez, A. Wolf, Paolo Costa, P. Pietzuch
{"title":"The SABER system for window-based hybrid stream processing with GPGPUs: demo","authors":"A. Koliousis, M. Weidlich, R. Fernandez, A. Wolf, Paolo Costa, P. Pietzuch","doi":"10.1145/2933267.2933291","DOIUrl":null,"url":null,"abstract":"Heterogeneous architectures that combine multi-core CPUs with many-core GPGPUs have the potential to improve the performance of data-intensive stream processing applications. Yet, a stream processing engine must execute streaming SQL queries with sufficient data-parallelism to fully utilise the available heterogeneous processors, and decide how to use each processor in the most effective way. Addressing these challenges, we demonstrate Saber, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. Saber executes window-based streaming SQL queries in a data-parallel fashion and employs an adaptive scheduling strategy to balance the load on the different types of processors. To hide data movement costs, Saber pipelines the transfer of stream data between CPU and GPGPU memory. In this paper, we review the design principles of Saber in terms of its hybrid stream processing model and its architecture for query execution. We also present a web front-end that monitors processing throughput.","PeriodicalId":277061,"journal":{"name":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933267.2933291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous architectures that combine multi-core CPUs with many-core GPGPUs have the potential to improve the performance of data-intensive stream processing applications. Yet, a stream processing engine must execute streaming SQL queries with sufficient data-parallelism to fully utilise the available heterogeneous processors, and decide how to use each processor in the most effective way. Addressing these challenges, we demonstrate Saber, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. Saber executes window-based streaming SQL queries in a data-parallel fashion and employs an adaptive scheduling strategy to balance the load on the different types of processors. To hide data movement costs, Saber pipelines the transfer of stream data between CPU and GPGPU memory. In this paper, we review the design principles of Saber in terms of its hybrid stream processing model and its architecture for query execution. We also present a web front-end that monitors processing throughput.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpgpu的基于窗口的混合流处理SABER系统:演示
将多核cpu与多核gpgpu相结合的异构架构有可能提高数据密集型流处理应用程序的性能。然而,流处理引擎必须以足够的数据并行性执行流SQL查询,以充分利用可用的异构处理器,并决定如何以最有效的方式使用每个处理器。为了解决这些挑战,我们展示了Saber,一种用于cpu和gpgpu的混合高性能关系流处理引擎。Saber以数据并行的方式执行基于窗口的流SQL查询,并采用自适应调度策略来平衡不同类型处理器上的负载。为了隐藏数据移动成本,Saber在CPU和GPGPU内存之间传输流数据。在本文中,我们回顾了Saber在其混合流处理模型和查询执行架构方面的设计原则。我们还提供了一个监控处理吞吐量的web前端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy efficient, context-aware cache coding for mobile information-centric networks High performance top-k processing of non-linear windows over data streams Distributed k-core decomposition and maintenance in large dynamic graphs Experience of event stream processing for top-k queries and dynamic graphs Automating computational placement in IoT environments: doctoral symposium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1