{"title":"A Data-based Protocol for One-way Trust in Inter-vehicular Communication","authors":"Stephen Ly, Yuan Cheng","doi":"10.1145/3445969.3450430","DOIUrl":null,"url":null,"abstract":"As autonomous vehicles fill the roads and more manufacturers join the trend, the need for a unified communication protocol grows. Current paradigms in vehicle-to-vehicle communication are too slow to provide accurate and meaningful traffic data in a timely fashion, and it is difficult to trust that incoming data is correct without an authoritative server verifying the sender's identity. This paper introduces a protocol for peer-to-peer exchanges of positional data that determines the trust level of a particular message by comparing matching object data hashes. Similar in concept to non-interactive zero-knowledge proofs, the design retains the privacy and anonymity of senders and is relatively fast compared to certificate-based solutions under a reasonable traffic load. Our preliminary experiment shows promising results, with much faster runtimes compared to similar cryptographic solutions. Although the current implementation is still rough around the edges, the basic design can provide the groundwork for future paradigms in inter-vehicular communication without depending on expensive cryptographic operations performed on special or more powerful hardware. This opens doors for protocols that can be run on current vehicles without requiring the collective processing power of all vehicles to increase.","PeriodicalId":103324,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3445969.3450430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As autonomous vehicles fill the roads and more manufacturers join the trend, the need for a unified communication protocol grows. Current paradigms in vehicle-to-vehicle communication are too slow to provide accurate and meaningful traffic data in a timely fashion, and it is difficult to trust that incoming data is correct without an authoritative server verifying the sender's identity. This paper introduces a protocol for peer-to-peer exchanges of positional data that determines the trust level of a particular message by comparing matching object data hashes. Similar in concept to non-interactive zero-knowledge proofs, the design retains the privacy and anonymity of senders and is relatively fast compared to certificate-based solutions under a reasonable traffic load. Our preliminary experiment shows promising results, with much faster runtimes compared to similar cryptographic solutions. Although the current implementation is still rough around the edges, the basic design can provide the groundwork for future paradigms in inter-vehicular communication without depending on expensive cryptographic operations performed on special or more powerful hardware. This opens doors for protocols that can be run on current vehicles without requiring the collective processing power of all vehicles to increase.