Alessandro Rizzello, S. Scavuzzo, A. Ferraris, A. Airale, M. Carello
{"title":"Electrothermal Battery Pack Model for Automotive Application: Design and Validation","authors":"Alessandro Rizzello, S. Scavuzzo, A. Ferraris, A. Airale, M. Carello","doi":"10.23919/AEITAUTOMOTIVE50086.2020.9307377","DOIUrl":null,"url":null,"abstract":"Thermal modeling of the battery is an important way to understand how the design and operating variables affect the thermal response during its operation. This paper presents a method for modeling the electrical and thermal behavior of a battery pack, starting from the characterization of the single Lithium-ion battery cell up to extend its validity to module and pack level. The model takes into account both the reversible entropic heat generation and the irreversible resistive heat to predict the temperature of the battery. A coupled CFD and thermal analysis on an elementary module is proposed and experimentally tested to validate the results obtained from the proposed model. Furthermore, the experimental test will verify the effectiveness of air cooling.","PeriodicalId":104806,"journal":{"name":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Thermal modeling of the battery is an important way to understand how the design and operating variables affect the thermal response during its operation. This paper presents a method for modeling the electrical and thermal behavior of a battery pack, starting from the characterization of the single Lithium-ion battery cell up to extend its validity to module and pack level. The model takes into account both the reversible entropic heat generation and the irreversible resistive heat to predict the temperature of the battery. A coupled CFD and thermal analysis on an elementary module is proposed and experimentally tested to validate the results obtained from the proposed model. Furthermore, the experimental test will verify the effectiveness of air cooling.