Intelligent information processing using neural networks and genetic algorithms

H. Abdel-Aty-Zohdy, R. Ewing
{"title":"Intelligent information processing using neural networks and genetic algorithms","authors":"H. Abdel-Aty-Zohdy, R. Ewing","doi":"10.1109/MWSCAS.2000.952886","DOIUrl":null,"url":null,"abstract":"Intelligent information processing (IIP) or the smart processing of signals in communication systems and data measurements from multi-sensor systems are needed for advanced microautonomous applications. A balanced combination of efficient algorithms, fast networks, and collaboration of the different technologies are required for smaller, faster, and more efficient system-on-a-chip applications. In this paper we present guidelines/approach for intelligent information processing using neural networks (NNs) and genetic algorithms (GAs) which are capable of learning through discovery and/or reinforcement with features optimization through chromosome mutations of GAs. Specific details about a special application for electronic-nose (EN) implementation to discriminate among four chemicals, using reinforcement NN implemented tiny-chip and a GA system implementation is presented with test results.","PeriodicalId":437349,"journal":{"name":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2000.952886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Intelligent information processing (IIP) or the smart processing of signals in communication systems and data measurements from multi-sensor systems are needed for advanced microautonomous applications. A balanced combination of efficient algorithms, fast networks, and collaboration of the different technologies are required for smaller, faster, and more efficient system-on-a-chip applications. In this paper we present guidelines/approach for intelligent information processing using neural networks (NNs) and genetic algorithms (GAs) which are capable of learning through discovery and/or reinforcement with features optimization through chromosome mutations of GAs. Specific details about a special application for electronic-nose (EN) implementation to discriminate among four chemicals, using reinforcement NN implemented tiny-chip and a GA system implementation is presented with test results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络和遗传算法进行智能信息处理
先进的微自治应用需要智能信息处理(IIP)或通信系统信号和多传感器系统数据测量的智能处理。高效算法、快速网络和不同技术协作的平衡组合需要更小、更快和更高效的片上系统应用。在本文中,我们提出了使用神经网络(NNs)和遗传算法(GAs)进行智能信息处理的指南/方法,这些算法能够通过发现和/或通过遗传算法的染色体突变进行特征优化来进行学习。本文详细介绍了电子鼻(EN)在四种化学物质鉴别中的特殊应用,即利用增强神经网络实现的微芯片和遗传算法系统实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high speed 3.3V current mode CMOS comparators with 10-b resolution Constraints implementation for IQML and MODE direction-of-arrival estimators A fast electric load forecasting using neural networks Noise reduction in speech signals using a TMS320C31 digital signal processor A high-frequency high-Q CMOS active inductor with DC bias control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1