Ran Li, Junqiao Wang, Mengke Ren, Wenhan Zhao, Mengyue He, Shuai Sun, Yu Mao, Shuo Tian, Yan Li, P. Ding
{"title":"Resonantly Enhanced Absorption in Bifurcation Plasmon Nanostructures for Refractive Index Sensing","authors":"Ran Li, Junqiao Wang, Mengke Ren, Wenhan Zhao, Mengyue He, Shuai Sun, Yu Mao, Shuo Tian, Yan Li, P. Ding","doi":"10.2139/ssrn.3947716","DOIUrl":null,"url":null,"abstract":"By changing or fine-tuning the surface structure of the metal, the characteristics of surface plasmon-especially the interaction with light-can be customized. In this work, we numerically design a plasmonic nanostructure composed of a pair of symmetrical bifurcation nanostructures. The composite nanostructure has significantly enhanced optical absorption, and a sharp groove is generated in the scattering spectrum due to the plasmon mode hybridization. The extremely intense and highly confined electromagnetic fields induced in the bifurcation plasmon nanostructures provide a sensitive environment to probe minor changes in the dielectric environment, and the simulation result shows that the average sensitivity is about 699 nm/RIU with the refractive indices from 1.332 to 1.467. Such high-performance composite nanostructure provides great potential for the application of SERS probing and label-free biosensing.","PeriodicalId":375434,"journal":{"name":"PhysicsRN EM Feeds","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhysicsRN EM Feeds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3947716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
By changing or fine-tuning the surface structure of the metal, the characteristics of surface plasmon-especially the interaction with light-can be customized. In this work, we numerically design a plasmonic nanostructure composed of a pair of symmetrical bifurcation nanostructures. The composite nanostructure has significantly enhanced optical absorption, and a sharp groove is generated in the scattering spectrum due to the plasmon mode hybridization. The extremely intense and highly confined electromagnetic fields induced in the bifurcation plasmon nanostructures provide a sensitive environment to probe minor changes in the dielectric environment, and the simulation result shows that the average sensitivity is about 699 nm/RIU with the refractive indices from 1.332 to 1.467. Such high-performance composite nanostructure provides great potential for the application of SERS probing and label-free biosensing.