{"title":"Dynamic Responses of Rotor Drops onto Auxiliary Bearing with the Support of Metal Rubber Ring","authors":"Zhu Yili, Zhang Yongchun","doi":"10.2174/1874155X01509011057","DOIUrl":null,"url":null,"abstract":"In an active magnetic bearing (AMB) system, the Auxiliary bearings (ABs) are indispensable to protect the rotor and stator in case of AMB failure. Most of the former researches try to modify relevant design parameters of ABs to buffer the following impacts and heating after rotor drop. Based on the analysis of the disadvantages of traditional ABs, a new type of AB with the support of metal rubber ring is proposed to enhance the AB work performance in AMB system. Detailed simulation models containing rigid rotor model, contact model between rotor and inner race as well as AB system model after rotor drop are established. Then, using those established models the dynamic responses are simulated to obtain proper metal rubber ring support characteristics. Finally, relevant rotor drop experiments are carried out on the established AMB test bench. The experiment results verify the advantages of the new type ABs and the correctness of simulation analysis.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874155X01509011057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In an active magnetic bearing (AMB) system, the Auxiliary bearings (ABs) are indispensable to protect the rotor and stator in case of AMB failure. Most of the former researches try to modify relevant design parameters of ABs to buffer the following impacts and heating after rotor drop. Based on the analysis of the disadvantages of traditional ABs, a new type of AB with the support of metal rubber ring is proposed to enhance the AB work performance in AMB system. Detailed simulation models containing rigid rotor model, contact model between rotor and inner race as well as AB system model after rotor drop are established. Then, using those established models the dynamic responses are simulated to obtain proper metal rubber ring support characteristics. Finally, relevant rotor drop experiments are carried out on the established AMB test bench. The experiment results verify the advantages of the new type ABs and the correctness of simulation analysis.