Design of Multidimensional Spatiotemporal Information Relevance Model

Fengda Zhang, Jingchang Pan, Gaoyu Jiang
{"title":"Design of Multidimensional Spatiotemporal Information Relevance Model","authors":"Fengda Zhang, Jingchang Pan, Gaoyu Jiang","doi":"10.1109/ICAICA50127.2020.9182364","DOIUrl":null,"url":null,"abstract":"Information object refers to anything that can be perceived or conceived in the form of information, including concrete and abstract concepts, such as people, events, architecture, engineering, trees, houses, prices, public opinion, etc. The evolution, change and relevance of these information objects depend on the two key characteristics of historical events and geographic information. The main content of this research is to propose a spatiotemporal information relevance model based on information object-state. Using the spatiotemporal information relevance model, through the reasonable design of a large amount of historical and geographic information storage database, it can show the spatiotemporal evolution of historical information objects, and tap the relevance between historical information objects, so that historical and geographical information can be scientifically and objectively displayed. This research topic will use big data, database, image processing and other technologies to clearly show the development context and relevance of information objects, improve the intuitiveness of historical and geographic information data display, and help to provide historical geographic information researchers with a way to obtain and display data.","PeriodicalId":113564,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA50127.2020.9182364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Information object refers to anything that can be perceived or conceived in the form of information, including concrete and abstract concepts, such as people, events, architecture, engineering, trees, houses, prices, public opinion, etc. The evolution, change and relevance of these information objects depend on the two key characteristics of historical events and geographic information. The main content of this research is to propose a spatiotemporal information relevance model based on information object-state. Using the spatiotemporal information relevance model, through the reasonable design of a large amount of historical and geographic information storage database, it can show the spatiotemporal evolution of historical information objects, and tap the relevance between historical information objects, so that historical and geographical information can be scientifically and objectively displayed. This research topic will use big data, database, image processing and other technologies to clearly show the development context and relevance of information objects, improve the intuitiveness of historical and geographic information data display, and help to provide historical geographic information researchers with a way to obtain and display data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多维时空信息关联模型的设计
信息对象是指任何可以以信息的形式感知或构想的事物,包括具体和抽象的概念,如人、事件、建筑、工程、树木、房屋、价格、舆论等。这些信息对象的演变、变化和相关性取决于历史事件和地理信息这两个关键特征。本研究的主要内容是提出一种基于信息客体状态的时空信息关联模型。利用时空信息关联模型,通过合理设计大量的历史地理信息存储数据库,可以显示历史信息对象的时空演变,挖掘历史信息对象之间的相关性,从而科学、客观地展示历史地理信息。本研究课题将利用大数据、数据库、图像处理等技术,清晰地展现信息对象的发展脉络和关联性,提高历史地理信息数据展示的直观性,有助于为历史地理信息研究者提供数据获取和展示的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined prediction model of tuberculosis based on generalized regression neural network Spinal fracture lesions segmentation based on U-net Review of Research on Multilevel Inverter Based on Asynchronous Motor Application of neural network in abnormal AIS data identification Integrated platform of on-board computer and star sensor electronics system based on COTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1