ECG Biometric using Statistical Feature of EEMD and VMD

M. Fauzan, Achmad Rizal, S. Hadiyoso
{"title":"ECG Biometric using Statistical Feature of EEMD and VMD","authors":"M. Fauzan, Achmad Rizal, S. Hadiyoso","doi":"10.1109/IAICT55358.2022.9887431","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG), as a biometric that has been widely studied, has advantages that are difficult to fake compared to biometrics using physical characteristics. This study simulated an ECG based biometric system with 15 subjects. It used the Butterworth low pass filter (LPF), ensemble empirical mode decomposition (EEMD) or variational mode decomposition (VMD), and statistical features as feature extraction method. The filtered signal will be segmented, and the subsequent five level decomposition using EEMD and VMD. Then, the signal analysis used the statistical feature approach for each intrinsic mode function (IMF) as result of decomposition process. These values become a feature set entered of K-Nearest Neighbor (KNN) as classifier; the highest result of 93% was achieved using VMD and KNN with Manhattan distance.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocardiogram (ECG), as a biometric that has been widely studied, has advantages that are difficult to fake compared to biometrics using physical characteristics. This study simulated an ECG based biometric system with 15 subjects. It used the Butterworth low pass filter (LPF), ensemble empirical mode decomposition (EEMD) or variational mode decomposition (VMD), and statistical features as feature extraction method. The filtered signal will be segmented, and the subsequent five level decomposition using EEMD and VMD. Then, the signal analysis used the statistical feature approach for each intrinsic mode function (IMF) as result of decomposition process. These values become a feature set entered of K-Nearest Neighbor (KNN) as classifier; the highest result of 93% was achieved using VMD and KNN with Manhattan distance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于EEMD和VMD统计特征的心电生物识别
心电图作为一种被广泛研究的生物识别技术,与利用身体特征进行生物识别相比,具有难以伪造的优点。本研究模拟了15名受试者的基于ECG的生物识别系统。采用Butterworth低通滤波器(LPF)、综经验模态分解(EEMD)或变分模态分解(VMD)和统计特征作为特征提取方法。将滤波后的信号进行分割,随后使用EEMD和VMD进行五电平分解。然后,对分解后的各本征模态函数(IMF)进行统计特征分析。这些值成为k近邻(KNN)作为分类器输入的特征集;在曼哈顿距离下,VMD和KNN的准确率最高,达到93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data Design of a Personal Digital Assistant for the Visually Challenged AutoSW: a new automated sliding window-based change point detection method for sensor data DOTA 2 Win Loss Prediction from Item and Hero Data with Machine Learning Hardware Realization of Sigmoid and Hyperbolic Tangent Activation Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1