SPOIL: Practical location privacy for location based services

Chen Di, S. Xiaodong, Ge Hailong, Li Hao, Zhou Shilei
{"title":"SPOIL: Practical location privacy for location based services","authors":"Chen Di, S. Xiaodong, Ge Hailong, Li Hao, Zhou Shilei","doi":"10.1109/ICCT.2017.8359701","DOIUrl":null,"url":null,"abstract":"This paper presents SPOIL (Shifted POI List), a new method to achieve location privacy for map services on smartphones. Using SPOIL, users can query routes from POI (Point of Interests) A to POI B, while not revealing the locations of A and B to the map server. Different from previous works, SPOIL is transparent to existing map services, assume no trusted third party, and more efficient for smartphones. The basic idea is simple: the client (i.e., smartphone) shifts user-intended POIs to some neighboring POIs instead, and query the map server using the shifted POIs. By carefully selecting places for shifting, we ensure: (1) privacy: on observing the route query, it is difficult for an adversary to identify the user-intended endpoints. (2) usability: the returned route is very similar to the intended one, thus giving useful directions for the user; To make SPOIL efficient for smartphones, we let clients retrieve candidate places for shifting from an additional server, instead of storing all the places and computing nearest ones locally. We implement SPOIL as an Android application, and evaluate it with real query traces. Experimental results show that SPOIL strikes a good balance among privacy, usability and efficiency.","PeriodicalId":199874,"journal":{"name":"2017 IEEE 17th International Conference on Communication Technology (ICCT)","volume":"324 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2017.8359701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents SPOIL (Shifted POI List), a new method to achieve location privacy for map services on smartphones. Using SPOIL, users can query routes from POI (Point of Interests) A to POI B, while not revealing the locations of A and B to the map server. Different from previous works, SPOIL is transparent to existing map services, assume no trusted third party, and more efficient for smartphones. The basic idea is simple: the client (i.e., smartphone) shifts user-intended POIs to some neighboring POIs instead, and query the map server using the shifted POIs. By carefully selecting places for shifting, we ensure: (1) privacy: on observing the route query, it is difficult for an adversary to identify the user-intended endpoints. (2) usability: the returned route is very similar to the intended one, thus giving useful directions for the user; To make SPOIL efficient for smartphones, we let clients retrieve candidate places for shifting from an additional server, instead of storing all the places and computing nearest ones locally. We implement SPOIL as an Android application, and evaluate it with real query traces. Experimental results show that SPOIL strikes a good balance among privacy, usability and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于基于位置的服务的实用位置隐私
本文提出了一种实现智能手机地图服务位置隐私的新方法——shiftpoi List (SPOIL)。使用SPOIL,用户可以查询从POI(兴趣点)A到POI B的路线,而不会向地图服务器显示A和B的位置。与之前的作品不同,SPOIL对现有的地图服务是透明的,假设没有可信的第三方,对智能手机更高效。基本思想很简单:客户端(即智能手机)将用户预期的poi转移到一些邻近的poi,并使用转移的poi查询地图服务器。通过仔细选择移动的位置,我们确保:(1)隐私:在观察路由查询时,攻击者很难识别用户预期的端点。(2)可用性:返回的路径与预期的路径非常相似,从而为用户提供有用的方向;为了使智能手机的SPOIL更高效,我们让客户端检索候选位置以便从另一个服务器转移,而不是存储所有位置并在本地计算最近的位置。我们将SPOIL实现为Android应用程序,并使用真实的查询跟踪对其进行评估。实验结果表明,该算法在隐私性、可用性和效率之间取得了很好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chemical substance classification using long short-term memory recurrent neural network One-way time transfer for large area through tropospheric scatter Application feature extraction by using both dynamic binary tracking and statistical learning Research on multi-target resolution process with the same beam of monopulse radar Pedestrian detection based on Visconti2 7502
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1