J. Ely, Jon Harper, Esteban N. Nieto, M. Semmelbeck
{"title":"CounterProp, Finally Adding the Correct Proppant in the Proper Size and Proper Sequence in Slick Water Treatments","authors":"J. Ely, Jon Harper, Esteban N. Nieto, M. Semmelbeck","doi":"10.2118/194370-MS","DOIUrl":null,"url":null,"abstract":"\n As long as Stokes law or low viscosity Newtonian fluids have been available, common knowledge within the industry has been that whenever these fluids are utilized during the hydraulic fracturing process, very rapid settling of any conventional proppant occurs. Over the years, there have been occasional jobs pumped where the larger sized proppant was the initial proppant pumped, followed by the smaller meshed sand, ceramic or bauxite materials. Little attention was paid to this differing sort of treatment, due to the belief in piston like displacement of proppant regardless of fluid type. Commonly curable resin-coated sand was always pumped in the very last slurry stage of a fracturing treatment, in the common hopes of controlling any potential sand production from the near wellbore area when operations were concluded and flow back operations were initiated to bring the well on line. In reality, with typical over flush volumes, any resin-coated sand pumped during a slick water treatment will travel far away from the wellbore.","PeriodicalId":103693,"journal":{"name":"Day 2 Wed, February 06, 2019","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, February 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194370-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As long as Stokes law or low viscosity Newtonian fluids have been available, common knowledge within the industry has been that whenever these fluids are utilized during the hydraulic fracturing process, very rapid settling of any conventional proppant occurs. Over the years, there have been occasional jobs pumped where the larger sized proppant was the initial proppant pumped, followed by the smaller meshed sand, ceramic or bauxite materials. Little attention was paid to this differing sort of treatment, due to the belief in piston like displacement of proppant regardless of fluid type. Commonly curable resin-coated sand was always pumped in the very last slurry stage of a fracturing treatment, in the common hopes of controlling any potential sand production from the near wellbore area when operations were concluded and flow back operations were initiated to bring the well on line. In reality, with typical over flush volumes, any resin-coated sand pumped during a slick water treatment will travel far away from the wellbore.