A. Zanco, S. Grivet-Talocia, T. Bradde, M. De Stefano
{"title":"Multivariate macromodeling with stability and passivity constraints","authors":"A. Zanco, S. Grivet-Talocia, T. Bradde, M. De Stefano","doi":"10.1109/SAPIW.2018.8401664","DOIUrl":null,"url":null,"abstract":"We present a general framework for the construction of guaranteed stable and passive multivariate macromodels from sampled frequency responses. The obtained macromodels embed in closed form the dependence on external parameters, through a data-driven approximation of input data samples based on orthogonal polynomial bases. The key novel contribution of this work is an extension to the multivariate and possibly high-dimensional case of Hamiltonian-based passivity check and enforcement algorithms, which can be applied to enforce both uniform stability and uniform passivity of the models. The modeling flow is demonstrated on a representative interconnect example.","PeriodicalId":423850,"journal":{"name":"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIW.2018.8401664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present a general framework for the construction of guaranteed stable and passive multivariate macromodels from sampled frequency responses. The obtained macromodels embed in closed form the dependence on external parameters, through a data-driven approximation of input data samples based on orthogonal polynomial bases. The key novel contribution of this work is an extension to the multivariate and possibly high-dimensional case of Hamiltonian-based passivity check and enforcement algorithms, which can be applied to enforce both uniform stability and uniform passivity of the models. The modeling flow is demonstrated on a representative interconnect example.