Two-Degree-of-Freedom Control of a Self-Sensing Micro-Actuator for HDD using Neural Networks

M. Sasaki, K. Fujihara, H. Yamada, Y. Nam, S. Ito
{"title":"Two-Degree-of-Freedom Control of a Self-Sensing Micro-Actuator for HDD using Neural Networks","authors":"M. Sasaki, K. Fujihara, H. Yamada, Y. Nam, S. Ito","doi":"10.1109/ISIC.2007.4450902","DOIUrl":null,"url":null,"abstract":"The present paper describes a two-degree-of-freedom control of a self-sensing micro-actuator for a dual-stage hard disk drive using neural networks. The two-degree-of-freedom control system is comprised of a feedforward controller and a feedback controller. Two neural networks are developed for the two-degree-of-freedom control system, one for the inverse dynamic model for the feedforward controller and one for system identification for the generation of the desired self-sensing signal. The feedback controller can realize the identified self-sensing signal. The micro-actuator uses a PZT actuator pair, installed on the assembly of the suspension. The self-sensing micro-actuator can be used to form a combined actuation and sensing mechanism. Experimental results show that the neural network approach can be used effectively for the control and identification of the self-sensing micro-actuator system","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The present paper describes a two-degree-of-freedom control of a self-sensing micro-actuator for a dual-stage hard disk drive using neural networks. The two-degree-of-freedom control system is comprised of a feedforward controller and a feedback controller. Two neural networks are developed for the two-degree-of-freedom control system, one for the inverse dynamic model for the feedforward controller and one for system identification for the generation of the desired self-sensing signal. The feedback controller can realize the identified self-sensing signal. The micro-actuator uses a PZT actuator pair, installed on the assembly of the suspension. The self-sensing micro-actuator can be used to form a combined actuation and sensing mechanism. Experimental results show that the neural network approach can be used effectively for the control and identification of the self-sensing micro-actuator system
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的硬盘自传感微驱动器二自由度控制
本文介绍了一种基于神经网络的双级硬盘自传感微驱动器的二自由度控制方法。该二自由度控制系统由前馈控制器和反馈控制器组成。针对二自由度控制系统开发了两个神经网络,一个用于前馈控制器的逆动态模型,另一个用于系统辨识以产生所需的自感知信号。反馈控制器可以实现识别自感知信号。微致动器采用PZT致动器对,安装在悬挂总成上。自传感微致动器可用于构成驱动与传感相结合的机构。实验结果表明,神经网络方法可以有效地用于自传感微作动器系统的控制和识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
μ-Interaction Measure for Unstable Systems GestureCam: A Smart Camera for Gesture Recognition and Gesture-Controlled Web Navigation A HHMM-Based Approach for Robust Fall Detection Verifying a User in a Personal Face Space The Effect of Image Resolution on the Performance of a Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1