Simple Recuperated s-CO2 Cycle Revisited: Optimization of Operating Parameters for Maximum Cycle Efficiency

A. Dutta, Adhip Gupta, S. Sathish, Aman Bandooni, Pramod Kumar
{"title":"Simple Recuperated s-CO2 Cycle Revisited: Optimization of Operating Parameters for Maximum Cycle Efficiency","authors":"A. Dutta, Adhip Gupta, S. Sathish, Aman Bandooni, Pramod Kumar","doi":"10.1115/gt2019-90315","DOIUrl":null,"url":null,"abstract":"\n The paper presents modeling and Design of Experiments (DOE) analysis for a simple recuperated s-CO2 closed loop Brayton cycle operating at a maximum temperature of 600°C and a compressor inlet temperature of 45°C. The analysis highlights the impact of isentropic efficiencies of the turbine and compressor, decoupled in this case, on other equipment such as recuperator, gas cooler and heater, all of which have a bearing on the overall performance of the s-CO2 Brayton cycle. A MATLAB program coupled with REFPROP is used to perform the thermodynamic analysis of the cycle. A design space exploration with a Design of Experiments (DOE) study is undertaken using I-sight™ (multi-objective optimization software), which is coupled with the MATLAB code. The outcome of the DOE study provides the optimal pressure ratios and high side pressures for maximum cycle efficiency in the design space. By varying pressure ratios along with a floating high side pressure, the analysis reveals that the cycle performance exhibits a peak around a pressure ratio of 2.5, with cycle efficiency being the objective function. A further interesting outcome of the DOE study reveals that the isentropic efficiencies of the compressor and turbine have a strong influence not only on the overall cycle efficiency, but also the optimum pressure ratio as well as the threshold pressures (low as well as high side pressure). An important outcome of this exercise shows that the isentropic efficiency of the turbine has a much greater impact on the overall cycle performance as compared to that of the compressor.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper presents modeling and Design of Experiments (DOE) analysis for a simple recuperated s-CO2 closed loop Brayton cycle operating at a maximum temperature of 600°C and a compressor inlet temperature of 45°C. The analysis highlights the impact of isentropic efficiencies of the turbine and compressor, decoupled in this case, on other equipment such as recuperator, gas cooler and heater, all of which have a bearing on the overall performance of the s-CO2 Brayton cycle. A MATLAB program coupled with REFPROP is used to perform the thermodynamic analysis of the cycle. A design space exploration with a Design of Experiments (DOE) study is undertaken using I-sight™ (multi-objective optimization software), which is coupled with the MATLAB code. The outcome of the DOE study provides the optimal pressure ratios and high side pressures for maximum cycle efficiency in the design space. By varying pressure ratios along with a floating high side pressure, the analysis reveals that the cycle performance exhibits a peak around a pressure ratio of 2.5, with cycle efficiency being the objective function. A further interesting outcome of the DOE study reveals that the isentropic efficiencies of the compressor and turbine have a strong influence not only on the overall cycle efficiency, but also the optimum pressure ratio as well as the threshold pressures (low as well as high side pressure). An important outcome of this exercise shows that the isentropic efficiency of the turbine has a much greater impact on the overall cycle performance as compared to that of the compressor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单再生s-CO2循环再访:优化操作参数以实现最大循环效率
本文介绍了一个简单的再生s-CO2闭环布雷顿循环的建模和实验设计(DOE)分析,该循环的最高温度为600°C,压缩机进口温度为45°C。分析强调了涡轮和压缩机等熵效率的影响,在这种情况下,对其他设备(如回热器、气体冷却器和加热器)的影响,所有这些都对s-CO2 Brayton循环的整体性能有影响。利用MATLAB程序和REFPROP对循环进行热力学分析。使用I-sight™(多目标优化软件)结合MATLAB代码进行设计空间探索和实验设计(DOE)研究。美国能源部的研究结果提供了最佳的压力比和高侧压力,以在设计空间内实现最大的循环效率。通过改变压力比和浮动高侧压力,分析表明,循环性能在压力比为2.5左右达到峰值,循环效率为目标函数。美国能源部研究的另一个有趣的结果表明,压气机和涡轮的等熵效率不仅对整体循环效率有很大影响,而且对最佳压力比和阈值压力(低侧压力和高侧压力)也有很大影响。该试验的一个重要结果表明,与压气机相比,涡轮的等熵效率对整个循环性能的影响要大得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1