Protease-activated protein kinase C in rat liver.

E Hashimoto, H Yamamura
{"title":"Protease-activated protein kinase C in rat liver.","authors":"E Hashimoto,&nbsp;H Yamamura","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In regenerating rat liver, an elevated protein kinase activity was detected which phosphorylated ribosomal protein S6 and histones. The properties of this enzyme were closely similar with those of protease-activated protein kinase C with Mr 45,000. During the study of the mechanism of proteolytic activation, type III protein kinase C (encoding alpha-sequence) was shown to be subjected to limited proteolysis by trypsin-like protease and converted to protein kinase M in ionic strength- and pH-dependent manner. This reaction was stimulated in the presence of Ca2+ and phospholipid under slightly higher ionic strength condition than physiological level (greater than 140 mM NaCl) and alkaline pH (7.5-8.0). These results suggest that activation of Na+/H+ exchanger in plasma membrane may trigger this type of proteolytic activation of protein kinase C. In addition to protein kinase M, another type of protease-activated kinase with Mr 80,000 was detected when limited proteolysis of protein kinase C was performed on inactive form of this enzyme (in the absence of either Ca2+ or phospholipid or both activators) under lower ionic strength condition. The molecular mass of this active enzyme was slightly smaller (approximately 200) than that of native protein kinase C. However, it is not clear at this time whether this small fragment was released from amino-terminal or carboxy-terminal domain to make protein kinase C partially active in the absence of Ca2+ and phospholipid. Although it has been proposed that proteolytic degradation of protein kinase C is involved in down regulation of this enzyme, the physiological significance of these two types of protease-activated forms of protein kinases in liver has remained obscure.</p>","PeriodicalId":22539,"journal":{"name":"The International journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In regenerating rat liver, an elevated protein kinase activity was detected which phosphorylated ribosomal protein S6 and histones. The properties of this enzyme were closely similar with those of protease-activated protein kinase C with Mr 45,000. During the study of the mechanism of proteolytic activation, type III protein kinase C (encoding alpha-sequence) was shown to be subjected to limited proteolysis by trypsin-like protease and converted to protein kinase M in ionic strength- and pH-dependent manner. This reaction was stimulated in the presence of Ca2+ and phospholipid under slightly higher ionic strength condition than physiological level (greater than 140 mM NaCl) and alkaline pH (7.5-8.0). These results suggest that activation of Na+/H+ exchanger in plasma membrane may trigger this type of proteolytic activation of protein kinase C. In addition to protein kinase M, another type of protease-activated kinase with Mr 80,000 was detected when limited proteolysis of protein kinase C was performed on inactive form of this enzyme (in the absence of either Ca2+ or phospholipid or both activators) under lower ionic strength condition. The molecular mass of this active enzyme was slightly smaller (approximately 200) than that of native protein kinase C. However, it is not clear at this time whether this small fragment was released from amino-terminal or carboxy-terminal domain to make protein kinase C partially active in the absence of Ca2+ and phospholipid. Although it has been proposed that proteolytic degradation of protein kinase C is involved in down regulation of this enzyme, the physiological significance of these two types of protease-activated forms of protein kinases in liver has remained obscure.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大鼠肝脏蛋白酶活化蛋白激酶C。
在再生大鼠肝脏中,检测到磷酸化核糖体蛋白S6和组蛋白的蛋白激酶活性升高。该酶的性质与蛋白酶活化蛋白激酶C的性质非常相似,Mr为45000。在蛋白水解激活机制的研究中,III型蛋白激酶C(编码α -序列)被胰蛋白酶样蛋白酶有限地水解,并以离子强度和ph依赖的方式转化为蛋白激酶M。在离子强度略高于生理水平(大于140 mM NaCl)和碱性pH(7.5 ~ 8.0)的条件下,Ca2+和磷脂的存在刺激了该反应。这些结果表明,质膜上Na+/H+交换器的激活可能会触发蛋白激酶C的这种蛋白水解激活。除了蛋白激酶M外,在低离子强度条件下,当对蛋白激酶C的失活形式(在没有Ca2+或磷脂或两种活化剂的情况下)进行有限的蛋白水解时,检测到另一种类型的蛋白酶活化激酶,其Mr为80,000。该活性酶的分子质量比天然蛋白激酶C略小(约200)。然而,目前尚不清楚这个小片段是从氨基端还是羧基端释放的,从而使蛋白激酶C在缺乏Ca2+和磷脂的情况下具有部分活性。虽然已经提出蛋白激酶C的蛋白水解降解参与了该酶的下调,但这两种类型的蛋白酶激活形式的蛋白激酶在肝脏中的生理意义仍然不清楚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced muscle protein breakdown in septic rats following treatment with interleukin-1 receptor antagonist. Induction of a 60-kDa heat shock protein in rat pancreas by water-immersion stress. Identification of a microsomal retinoic acid synthase as a microsomal cytochrome P-450-linked monooxygenase system. A comparative study on lipid peroxidation in cerebral cortex of stroke-prone spontaneously hypertensive and normotensive rats. Isolation and characterization of fibrinogenase from Candida albicans NH-1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1