Research on TCM syndrome differentiation based on multi-feature fusion and GCN

Boting Liu, Weili Guan, Zhijie Fang
{"title":"Research on TCM syndrome differentiation based on multi-feature fusion and GCN","authors":"Boting Liu, Weili Guan, Zhijie Fang","doi":"10.1117/12.2682399","DOIUrl":null,"url":null,"abstract":"Syndrome differentiation (SD) is a basic task in TCM (Traditional Chinese Medicine) diagnosis and treatment. TCM syndrome differentiation is very complex and time-consuming. Meanwhile, the accuracy of the results depends on the experience of TCM practitioners. To help TCM practitioners differentiate syndrome more quickly, we propose a syndrome differentiation method of deep learning based on multi-feature fusion. We extracted char, word and POS (Part of Speech) from TCM diagnosis and treatment records. The vector representation of char feature is obtained by ZY-BERT (Zhong Yi BERT), ZY-BERT was pre-trained on large datasets of TCM-SD (TCM Syndrome Differentiation). The vector representation of word and POS is obtained by Word2vec (Word to vector). We construct text graphs of char, word and POS according to context. GCN (Graph Convolutional Networks) is used to extract spatial structure information between multiple features to achieve multi-feature fusion. The experiment was carried out on TCM-SD. The experimental results showed that the accuracy of the proposed method was 81.52%, which was better than the comparison method. This method is helpful in the development of TCM modernization.","PeriodicalId":440430,"journal":{"name":"International Conference on Electronic Technology and Information Science","volume":"6 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Technology and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Syndrome differentiation (SD) is a basic task in TCM (Traditional Chinese Medicine) diagnosis and treatment. TCM syndrome differentiation is very complex and time-consuming. Meanwhile, the accuracy of the results depends on the experience of TCM practitioners. To help TCM practitioners differentiate syndrome more quickly, we propose a syndrome differentiation method of deep learning based on multi-feature fusion. We extracted char, word and POS (Part of Speech) from TCM diagnosis and treatment records. The vector representation of char feature is obtained by ZY-BERT (Zhong Yi BERT), ZY-BERT was pre-trained on large datasets of TCM-SD (TCM Syndrome Differentiation). The vector representation of word and POS is obtained by Word2vec (Word to vector). We construct text graphs of char, word and POS according to context. GCN (Graph Convolutional Networks) is used to extract spatial structure information between multiple features to achieve multi-feature fusion. The experiment was carried out on TCM-SD. The experimental results showed that the accuracy of the proposed method was 81.52%, which was better than the comparison method. This method is helpful in the development of TCM modernization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多特征融合与GCN的中医辨证研究
辨证论治是中医诊治的一项基本任务。中医辨证过程复杂,耗时长。同时,结果的准确性取决于中医从业人员的经验。为了帮助中医更快地辨证,我们提出了一种基于多特征融合的深度学习辨证方法。从中医诊疗记录中提取字符、单词和词类。通过ZY-BERT (Zhong Yi BERT)获得字符特征的向量表示,ZY-BERT在TCM- sd (TCM Syndrome Differentiation)大数据集上进行预训练。word和POS的向量表示由Word2vec (word to vector)获得。我们根据上下文构造char、word和POS的文本图。采用GCN(图卷积网络)提取多个特征之间的空间结构信息,实现多特征融合。实验采用中药- sd进行。实验结果表明,该方法的准确率为81.52%,优于对比方法。这种方法有助于中医现代化的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network traffic classification based on multi-head attention and deep metric learning A study of regional precipitation data fusion model based on BP-LSTM in Qinghai province Design and application of an intelligent monitoring and early warning system for bioremediation of coking contaminated sites Research on improved adaptive spectrum access mechanism for millimetre wave Unloading optimization of networked vehicles based on improved genetic and particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1