PresiUniv at TSAR-2022 Shared Task: Generation and Ranking of Simplification Substitutes of Complex Words in Multiple Languages

Peniel Whistely, Sandeep Albert Mathias, Galiveeti Poornima
{"title":"PresiUniv at TSAR-2022 Shared Task: Generation and Ranking of Simplification Substitutes of Complex Words in Multiple Languages","authors":"Peniel Whistely, Sandeep Albert Mathias, Galiveeti Poornima","doi":"10.18653/v1/2022.tsar-1.22","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our approach to generate and rank candidate simplifications using pre-trained language models (Eg. BERT), publicly available word embeddings (Eg. FastText), and a part-of-speech tagger, to generate and rank candidate contextual simplifications for a given complex word. In this task, our system, PresiUniv, was placed first in the Spanish track, 5th in the Brazilian-Portuguese track, and 10th in the English track. We upload our codes and data for this project to aid in replication of our results. We also analyze some of the errors and describe design decisions which we took while writing the paper.","PeriodicalId":247582,"journal":{"name":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.tsar-1.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we describe our approach to generate and rank candidate simplifications using pre-trained language models (Eg. BERT), publicly available word embeddings (Eg. FastText), and a part-of-speech tagger, to generate and rank candidate contextual simplifications for a given complex word. In this task, our system, PresiUniv, was placed first in the Spanish track, 5th in the Brazilian-Portuguese track, and 10th in the English track. We upload our codes and data for this project to aid in replication of our results. We also analyze some of the errors and describe design decisions which we took while writing the paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多语言复杂词语简化替代词的生成与排序
在本文中,我们描述了我们使用预训练的语言模型(例如:BERT),公开可用的词嵌入(例如;FastText)和词性标注器,用于生成给定复杂单词的候选上下文简化并对其进行排序。在这项任务中,我们的系统PresiUniv在西班牙语组中排名第一,在巴西-葡萄牙语组中排名第五,在英语组中排名第十。我们为这个项目上传代码和数据,以帮助复制我们的结果。我们还分析了一些错误,并描述了我们在撰写论文时所做的设计决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel Corpus Filtering for Japanese Text Simplification teamPN at TSAR-2022 Shared Task: Lexical Simplification using Multi-Level and Modular Approach CENTAL at TSAR-2022 Shared Task: How Does Context Impact BERT-Generated Substitutions for Lexical Simplification? A Benchmark for Neural Readability Assessment of Texts in Spanish A Dataset of Word-Complexity Judgements from Deaf and Hard-of-Hearing Adults for Text Simplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1