End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments

Honghu Xue, Rui Song, Julian Petzold, Benedikt Hein, Heiko Hamann, Elmar Rueckert
{"title":"End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments","authors":"Honghu Xue, Rui Song, Julian Petzold, Benedikt Hein, Heiko Hamann, Elmar Rueckert","doi":"10.1109/Humanoids53995.2022.10000201","DOIUrl":null,"url":null,"abstract":"We solve a pedestrian visual navigation problem with a first-person view in an urban setting via deep reinforcement learning in an end-to-end manner. The major challenges lie in severe partial observability and sparse positive experiences of reaching the goal. To address partial observability, we propose a novel 3D-temporal convolutional network to encode sequential historical visual observations, its effectiveness is verified by comparing to a commonly-used Frame-Stacking approach. For sparse positive samples, we propose an improved automatic curriculum learning algorithm NavACL+, which proposes meaningful curricula starting from easy tasks and gradually generalizing to challenging ones. NavACL+ is shown to facilitate the learning process with 21% earlier convergence, to improve the task success rate on difficult tasks by 40% compared to the original NavACL algorithm [1] and to offer enhanced generalization to different initial poses compared to training from a fixed initial pose.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We solve a pedestrian visual navigation problem with a first-person view in an urban setting via deep reinforcement learning in an end-to-end manner. The major challenges lie in severe partial observability and sparse positive experiences of reaching the goal. To address partial observability, we propose a novel 3D-temporal convolutional network to encode sequential historical visual observations, its effectiveness is verified by comparing to a commonly-used Frame-Stacking approach. For sparse positive samples, we propose an improved automatic curriculum learning algorithm NavACL+, which proposes meaningful curricula starting from easy tasks and gradually generalizing to challenging ones. NavACL+ is shown to facilitate the learning process with 21% earlier convergence, to improve the task success rate on difficult tasks by 40% compared to the original NavACL algorithm [1] and to offer enhanced generalization to different initial poses compared to training from a fixed initial pose.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市环境中第一人称行人视觉导航的端到端深度强化学习
我们通过端到端方式的深度强化学习,解决了城市环境中第一人称视角的行人视觉导航问题。主要的挑战在于严重的部分可观测性和稀少的实现目标的积极经验。为了解决部分可观测性问题,我们提出了一种新的3D-temporal卷积网络来编码序列历史视觉观测,并通过与常用的帧堆叠方法进行比较来验证其有效性。对于稀疏正样本,我们提出了一种改进的自动课程学习算法NavACL+,该算法从简单的任务开始,逐步推广到具有挑战性的任务,提出有意义的课程。研究表明,与原始NavACL算法[1]相比,NavACL+以21%的早期收敛率促进了学习过程,将困难任务的任务成功率提高了40%,并且与从固定初始姿态进行训练相比,对不同初始姿态的泛化能力增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Patient- and Teleoperator-led Robotic Physiotherapy via Strain Map Segmentation and Shared-authority Self-Contained Calibration of an Elastic Humanoid Upper Body Using Only a Head-Mounted RGB Camera Self-collision avoidance in bimanual teleoperation using CollisionIK: algorithm revision and usability experiment Bimanual Manipulation Workspace Analysis of Humanoid Robots with Object Specific Coupling Constraints A Dexterous, Adaptive, Affordable, Humanlike Robot Hand: Towards Prostheses with Dexterous Manipulation Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1