Semi-automatic BPT for Image Retrieval

Shirin Ghanbari, J. Woods, S. Lucas
{"title":"Semi-automatic BPT for Image Retrieval","authors":"Shirin Ghanbari, J. Woods, S. Lucas","doi":"10.1109/CBMI.2009.17","DOIUrl":null,"url":null,"abstract":"This paper presents a novel semi-automatic tool for content retrieval. A multi-dimension Binary Partition Tree (BPT) is generated to perform object based image retrieval. The tree is colour based but has the advantage of incorporating spatial frequency to form semantically meaningful tree nodes. For retrieval, a node of the query image is matched against the nodes of the BPT of the database image. These are matched according to a combination of colour histograms, texture features and edge histograms. This semi-automatic tool allows users to have more freedom in their choice of query. The paper illustrates how the use of multi-dimensional information can significantly enhance content retrieval results for natural images.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel semi-automatic tool for content retrieval. A multi-dimension Binary Partition Tree (BPT) is generated to perform object based image retrieval. The tree is colour based but has the advantage of incorporating spatial frequency to form semantically meaningful tree nodes. For retrieval, a node of the query image is matched against the nodes of the BPT of the database image. These are matched according to a combination of colour histograms, texture features and edge histograms. This semi-automatic tool allows users to have more freedom in their choice of query. The paper illustrates how the use of multi-dimensional information can significantly enhance content retrieval results for natural images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半自动BPT图像检索
提出了一种新的半自动内容检索工具。生成了一个多维二叉分割树(BPT)来执行基于对象的图像检索。该树是基于颜色的,但具有结合空间频率形成语义上有意义的树节点的优势。对于检索,查询图像的节点与数据库图像的BPT的节点进行匹配。根据颜色直方图、纹理特征和边缘直方图的组合进行匹配。这个半自动工具允许用户在选择查询时有更多的自由。本文说明了如何使用多维信息可以显著提高自然图像的内容检索结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Vector Based Moving Object Detection and Tracking in the MPEG Compressed Domain A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification Monophony vs Polyphony: A New Method Based on Weibull Bivariate Models Kernel Discriminant Analysis Using Triangular Kernel for Semantic Scene Classification Biometric Responses to Music-Rich Segments in Films: The CDVPlex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1