{"title":"Towards extremely fast context switching in a block-multithreaded processor","authors":"Winfried Grünewald, T. Ungerer","doi":"10.1109/EURMIC.1996.546486","DOIUrl":null,"url":null,"abstract":"Multithreaded processors use a fast context switch to bridge latencies caused by memory accesses or by synchronization operations. In the block-multithreaded processor-called Rhamma-load/store, synchronization and execution operations of different threads of control are executed simultaneously by appropriate functional units. A fast context switch is performed, whenever a functional unit comes across an operation destined for another unit. Switching contexts on each load/store instruction sequence allows a much faster context switch in the execution unit than previously published designs do. The results show the potential of multithreading to spare expensive off-chip cache in a workstation environment. The load/store unit proves as the principal bottleneck. In particular the memory cycle time is performance critical. We show that multithreaded processors profit more than conventional RISC processors by a shorter memory cycle time.","PeriodicalId":311520,"journal":{"name":"Proceedings of EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware and Software Design Strategies","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware and Software Design Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURMIC.1996.546486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Multithreaded processors use a fast context switch to bridge latencies caused by memory accesses or by synchronization operations. In the block-multithreaded processor-called Rhamma-load/store, synchronization and execution operations of different threads of control are executed simultaneously by appropriate functional units. A fast context switch is performed, whenever a functional unit comes across an operation destined for another unit. Switching contexts on each load/store instruction sequence allows a much faster context switch in the execution unit than previously published designs do. The results show the potential of multithreading to spare expensive off-chip cache in a workstation environment. The load/store unit proves as the principal bottleneck. In particular the memory cycle time is performance critical. We show that multithreaded processors profit more than conventional RISC processors by a shorter memory cycle time.