Rahul Arora, Alec Jacobson, Timothy R. Langlois, Yijiang Huang, C. Mueller, W. Matusik, Ariel Shamir, Karan Singh, D. Levin
{"title":"Volumetric Michell trusses for parametric design & fabrication","authors":"Rahul Arora, Alec Jacobson, Timothy R. Langlois, Yijiang Huang, C. Mueller, W. Matusik, Ariel Shamir, Karan Singh, D. Levin","doi":"10.1145/3328939.3328999","DOIUrl":null,"url":null,"abstract":"We present the first algorithm for designing volumetric Michell Trusses. Our method uses a parametrization-based approach to generate trusses made of structural elements aligned with the primary direction of an object's stress field. Such trusses exhibit high strength-to-weight ratio while also being parametrically editable which can be easily integrated with parametric editing tools such as Autodesk Fusion. We show a number of examples that demonstrate that the output of our algorithm produces truss structures that are aligned with an object's underlying stress tensor field, are structurally sound and that their global parametrization facilitates the creation of unique structures in a number of domains.","PeriodicalId":404567,"journal":{"name":"Proceedings of the 3rd Annual ACM Symposium on Computational Fabrication","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Annual ACM Symposium on Computational Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328939.3328999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
We present the first algorithm for designing volumetric Michell Trusses. Our method uses a parametrization-based approach to generate trusses made of structural elements aligned with the primary direction of an object's stress field. Such trusses exhibit high strength-to-weight ratio while also being parametrically editable which can be easily integrated with parametric editing tools such as Autodesk Fusion. We show a number of examples that demonstrate that the output of our algorithm produces truss structures that are aligned with an object's underlying stress tensor field, are structurally sound and that their global parametrization facilitates the creation of unique structures in a number of domains.