Fan Wang, Minghui Nan, Sunghoon Cho, Chang-sei Kim, Jong-Oh Park, Eunpyo Choi
{"title":"Bioinspired Ionic Soft Actuator Based on Core-Shell-Structured Bacterial Cellulose Membrane","authors":"Fan Wang, Minghui Nan, Sunghoon Cho, Chang-sei Kim, Jong-Oh Park, Eunpyo Choi","doi":"10.1109/MARSS.2018.8481151","DOIUrl":null,"url":null,"abstract":"Bioinspired soft actuators have received burgeoning interest because of their applications in future electronic devices including soft robots, soft haptic devices, human-friendly flexible wearable devices, and biomedical robots. Here, a biofriendly soft actuator was newly designed based on core-shell-structured bacterial cellulose membrane, which was fabricated by homogeneously depositing polypyrrole nanoparticles on the surface of TEMPO-Oxidized bacterial cellulose (TOBC) nanofibers via a chemical polymerization method. The proposed soft actuator under both harmonic and step electrical inputs showed relatively large bending mechanical deformation, fast response time, and good long-term durability in air condition, which was due to the enhanced electrochemical properties of TOBC-Polypyrrole membrane, resulting from its highly porous structure and high conductivity. Therefore, the designed TOBC-Polypyrrole actuator can be a strong candidate for bioinspired actuating devices such as, soft and wearable electronics, and active biomedical devices.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Bioinspired soft actuators have received burgeoning interest because of their applications in future electronic devices including soft robots, soft haptic devices, human-friendly flexible wearable devices, and biomedical robots. Here, a biofriendly soft actuator was newly designed based on core-shell-structured bacterial cellulose membrane, which was fabricated by homogeneously depositing polypyrrole nanoparticles on the surface of TEMPO-Oxidized bacterial cellulose (TOBC) nanofibers via a chemical polymerization method. The proposed soft actuator under both harmonic and step electrical inputs showed relatively large bending mechanical deformation, fast response time, and good long-term durability in air condition, which was due to the enhanced electrochemical properties of TOBC-Polypyrrole membrane, resulting from its highly porous structure and high conductivity. Therefore, the designed TOBC-Polypyrrole actuator can be a strong candidate for bioinspired actuating devices such as, soft and wearable electronics, and active biomedical devices.