STREAMIT: Dynamic visualization and interactive exploration of text streams

J. Alsakran, Yang Chen, Ye Zhao, Jing Yang, Dongning Luo
{"title":"STREAMIT: Dynamic visualization and interactive exploration of text streams","authors":"J. Alsakran, Yang Chen, Ye Zhao, Jing Yang, Dongning Luo","doi":"10.1109/PACIFICVIS.2011.5742382","DOIUrl":null,"url":null,"abstract":"Text streams demand an effective, interactive, and on-the-fly method to explore the dynamic and massive data sets, and meanwhile extract valuable information for visual analysis. In this paper, we propose such an interactive visualization system that enables users to explore streaming-in text documents without prior knowledge of the data. The system can constantly incorporate incoming documents from a continuous source into existing visualization context, which is “physically” achieved by minimizing a potential energy defined from similarities between documents. Unlike most existing methods, our system uses dynamic keyword vectors to incorporate newly-introduced keywords from data streams. Furthermore, we propose a special keyword importance that makes it possible for users to adjust the similarity on-the-fly, and hence achieve their preferred visual effects in accordance to varying interests, which also helps to identify hot spots and outliers. We optimize the system performance through a similarity grid and with parallel implementation on graphics hardware (GPU), which achieves instantaneous animated visualization even for a very large data collection. Moreover, our system implements a powerful user interface enabling various user interactions for in-depth data analysis. Experiments and case studies are presented to illustrate our dynamic system for text stream exploration.","PeriodicalId":127522,"journal":{"name":"2011 IEEE Pacific Visualization Symposium","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2011.5742382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

Text streams demand an effective, interactive, and on-the-fly method to explore the dynamic and massive data sets, and meanwhile extract valuable information for visual analysis. In this paper, we propose such an interactive visualization system that enables users to explore streaming-in text documents without prior knowledge of the data. The system can constantly incorporate incoming documents from a continuous source into existing visualization context, which is “physically” achieved by minimizing a potential energy defined from similarities between documents. Unlike most existing methods, our system uses dynamic keyword vectors to incorporate newly-introduced keywords from data streams. Furthermore, we propose a special keyword importance that makes it possible for users to adjust the similarity on-the-fly, and hence achieve their preferred visual effects in accordance to varying interests, which also helps to identify hot spots and outliers. We optimize the system performance through a similarity grid and with parallel implementation on graphics hardware (GPU), which achieves instantaneous animated visualization even for a very large data collection. Moreover, our system implements a powerful user interface enabling various user interactions for in-depth data analysis. Experiments and case studies are presented to illustrate our dynamic system for text stream exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本流的动态可视化和交互式探索
文本流需要一种有效的、交互式的、实时的方法来探索动态的、海量的数据集,同时提取有价值的信息进行可视化分析。在本文中,我们提出了这样一个交互式可视化系统,使用户能够在没有数据先验知识的情况下探索流文本文档。系统可以不断地将来自连续源的传入文档合并到现有的可视化上下文中,这是通过最小化文档之间的相似性定义的势能来“物理地”实现的。与大多数现有方法不同,我们的系统使用动态关键字向量来合并来自数据流的新引入的关键字。此外,我们提出了一个特殊的关键字重要性,使用户可以根据不同的兴趣动态调整相似度,从而实现他们喜欢的视觉效果,这也有助于识别热点和异常值。我们通过相似网格和图形硬件(GPU)上的并行实现来优化系统性能,即使对于非常大的数据集也可以实现瞬时动画可视化。此外,我们的系统实现了一个强大的用户界面,支持各种用户交互进行深入的数据分析。实验和案例分析说明了我们的文本流探索动态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page An advanced network visualization system for financial crime detection Static correlation visualization for large time-varying volume data Keynote address: Why everyone seems to be using spring embedders for network visualization, and should not Dual space analysis of turbulent combustion particle data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1