Simplicial depth and its median: Selected properties and limitations

Stanislav Nagy
{"title":"Simplicial depth and its median: Selected properties and limitations","authors":"Stanislav Nagy","doi":"10.1002/sam.11605","DOIUrl":null,"url":null,"abstract":"Depth functions are important tools of nonparametric statistics that extend orderings, ranks, and quantiles to the setup of multivariate data. We revisit the classical definition of the simplicial depth and explore its theoretical properties when evaluated with respect to datasets or measures that do not necessarily possess a symmetric density. Recent advances from discrete geometry are used to refine the results about the robustness and continuity of the simplicial depth and its induced multivariate median. Further, we compute the exact simplicial depth in several scenarios and point out some undesirable behavior: (i) the simplicial depth does not have to be maximized at the center of symmetry of the distribution, (ii) it is not necessarily unimodal, and can possess local extremes, and (iii) the sets of the induced multivariate medians or other central regions do not have to be connected.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Depth functions are important tools of nonparametric statistics that extend orderings, ranks, and quantiles to the setup of multivariate data. We revisit the classical definition of the simplicial depth and explore its theoretical properties when evaluated with respect to datasets or measures that do not necessarily possess a symmetric density. Recent advances from discrete geometry are used to refine the results about the robustness and continuity of the simplicial depth and its induced multivariate median. Further, we compute the exact simplicial depth in several scenarios and point out some undesirable behavior: (i) the simplicial depth does not have to be maximized at the center of symmetry of the distribution, (ii) it is not necessarily unimodal, and can possess local extremes, and (iii) the sets of the induced multivariate medians or other central regions do not have to be connected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单深度及其中值:选定的属性和限制
深度函数是非参数统计的重要工具,它将排序、秩和分位数扩展到多变量数据的设置。我们重新审视了简单深度的经典定义,并在对不一定具有对称密度的数据集或测量进行评估时探索了其理论性质。利用离散几何的最新进展,改进了简单深度及其诱导的多元中值的鲁棒性和连续性的结果。此外,我们在几种情况下计算了精确的简单深度,并指出了一些不良行为:(i)简单深度不必在分布的对称中心最大化,(ii)它不一定是单峰的,并且可以具有局部极值,以及(iii)诱导的多元中位数或其他中心区域的集合不必连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1