A semi-supervised learning approach to study the energy consumption in smart buildings

Carlos Quintero Gull, J. Aguilar, M. Rodríguez-Moreno
{"title":"A semi-supervised learning approach to study the energy consumption in smart buildings","authors":"Carlos Quintero Gull, J. Aguilar, M. Rodríguez-Moreno","doi":"10.1109/SSCI50451.2021.9659911","DOIUrl":null,"url":null,"abstract":"In this work, we use the semi-supervised LAMDA-HSCC algorithm for characterizing the energy consumption in smart buildings, which can work with labeled and unlabeled data. Particularly, it uses the LAMDA-RD approach for the clustering problem and the LAMDA-HAD approach for the classification problem. Additionally, this algorithm uses three submodels for merging, partition groups (classes/cluster) and migrating individuals from a group to another. For the performance evaluation, several datasets of energetic consumption are used, with different percent of labeled data, showing very encouraging results according to two metrics in the semi-supervised context.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we use the semi-supervised LAMDA-HSCC algorithm for characterizing the energy consumption in smart buildings, which can work with labeled and unlabeled data. Particularly, it uses the LAMDA-RD approach for the clustering problem and the LAMDA-HAD approach for the classification problem. Additionally, this algorithm uses three submodels for merging, partition groups (classes/cluster) and migrating individuals from a group to another. For the performance evaluation, several datasets of energetic consumption are used, with different percent of labeled data, showing very encouraging results according to two metrics in the semi-supervised context.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能建筑能耗研究的半监督学习方法
在这项工作中,我们使用半监督LAMDA-HSCC算法来表征智能建筑中的能耗,该算法可以处理标记和未标记的数据。特别是,它使用lambda - rd方法来解决聚类问题,使用lambda - had方法来解决分类问题。此外,该算法使用三个子模型来合并、划分组(类/簇)和将个体从一个组迁移到另一个组。对于性能评估,使用了几个能量消耗数据集,标记数据的百分比不同,根据半监督环境下的两个指标显示出非常令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1