PEM Fuel Cell Design Simulation for Electric Vehicles Using Artificial Neural Networks

Amira Mohamed, Hatem Ibrahem, Ki-Bum Kim
{"title":"PEM Fuel Cell Design Simulation for Electric Vehicles Using Artificial Neural Networks","authors":"Amira Mohamed, Hatem Ibrahem, Ki-Bum Kim","doi":"10.1109/ICCE53296.2022.9730347","DOIUrl":null,"url":null,"abstract":"The recent research on fuel cell design has shown the effectiveness of the simulation tools on saving time and money, so we propose a fuel cell design method using artificial neural networks (ANN) for the proton exchange membrane which is the most common and commercially used fuel cell type. We train an artificial neural network on previously performed fuel cell design experiments proposed in another research as a dataset, then we test the trained model by simulating the output power density that can be obtained from user input design data. The used dataset employs commonly used cathode, anode, and membrane types which allows the simulation process using the same materials which are commercially available. We show that the software simulation process using ANN is so beneficial and can produce accurate simulation results imitating the real-world design data.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The recent research on fuel cell design has shown the effectiveness of the simulation tools on saving time and money, so we propose a fuel cell design method using artificial neural networks (ANN) for the proton exchange membrane which is the most common and commercially used fuel cell type. We train an artificial neural network on previously performed fuel cell design experiments proposed in another research as a dataset, then we test the trained model by simulating the output power density that can be obtained from user input design data. The used dataset employs commonly used cathode, anode, and membrane types which allows the simulation process using the same materials which are commercially available. We show that the software simulation process using ANN is so beneficial and can produce accurate simulation results imitating the real-world design data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的电动汽车PEM燃料电池设计仿真
近年来燃料电池设计的研究表明,仿真工具在节省时间和金钱方面是有效的,因此我们提出了一种基于人工神经网络(ANN)的燃料电池设计方法,用于质子交换膜燃料电池的设计。质子交换膜燃料电池是最常见的和商业应用的燃料电池类型。我们将另一项研究中提出的燃料电池设计实验作为数据集来训练人工神经网络,然后通过模拟从用户输入设计数据中获得的输出功率密度来测试训练好的模型。使用的数据集采用常用的阴极,阳极和膜类型,允许使用相同的商业可用材料进行模拟过程。结果表明,采用人工神经网络的软件仿真过程是非常有益的,可以得到与实际设计数据相似的精确仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
YOLO-Based Deep Learning Design for In-Cabin Monitoring System with Fisheye-Lens Camera Deep Guidance Decoder with Semantic Boundary Learning for Boundary-Aware Semantic Segmentation Barcode Image Identification Based on Maximum a Posterior Probability Big Data Edge on Consumer Devices for Precision Medicine System of Predicting Dementia Using Transformer Based Ensemble Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1