{"title":"Triangular Mesh Geometry Coding with Multiresolution Decomposition Based on Structuring of Surrounding Vertices","authors":"S. Watanabe, A. Kawanaka","doi":"10.1109/ISSPIT.2008.4775699","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new polygonal mesh geometry coding scheme based on a process of structuring by acquiring surrounding vertices of the polygonal mesh one layer at a time. The structuring process begins by selecting the start vertex and proceeding by acquiring surrounding vertices of the polygonal mesh. As a result, we obtain a 2-D structured vertex table. Structured geometry data are generated according to the structured vertices and encoded by a multiresolution decomposition and space frequency quantization coding method. In our proposed scheme, the multiresolution decomposition uses the connectivity of the polygonal mesh. In addition, with a space frequency quantization coding scheme, we can reduce redundancies of decomposed coefficients at similar positions in different components of decomposition level. Experimental results show that the proposed scheme gives better coding performance at lower bit-rates than the usual schemes.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we propose a new polygonal mesh geometry coding scheme based on a process of structuring by acquiring surrounding vertices of the polygonal mesh one layer at a time. The structuring process begins by selecting the start vertex and proceeding by acquiring surrounding vertices of the polygonal mesh. As a result, we obtain a 2-D structured vertex table. Structured geometry data are generated according to the structured vertices and encoded by a multiresolution decomposition and space frequency quantization coding method. In our proposed scheme, the multiresolution decomposition uses the connectivity of the polygonal mesh. In addition, with a space frequency quantization coding scheme, we can reduce redundancies of decomposed coefficients at similar positions in different components of decomposition level. Experimental results show that the proposed scheme gives better coding performance at lower bit-rates than the usual schemes.