Predicting Popularity of Facebook Videos Through Visual Features Using Support Vector Machine Classifier

B. Dalmoro, S. Musse
{"title":"Predicting Popularity of Facebook Videos Through Visual Features Using Support Vector Machine Classifier","authors":"B. Dalmoro, S. Musse","doi":"10.5753/SEMISH.2021.15815","DOIUrl":null,"url":null,"abstract":"With the popularization of social networks, the sharing and consumption of content in video format becomes easier. Understanding what makes a video popular and being able to predict its popularity in number of views is useful for both content creators and advertising. In this work, we explore visual features extracted from 1,820 Facebook videos in order to predict whether they will reach more than a certain number of views on the seven days after publication. For this purpose, we used Support Vector Machine with Gaussian Radial Basis Function classification model. Using only visual features as predictors, the model with Video Characteristics and Rigidity features combined reached Kappa of 0.7324, sensitivity of 0.8930, and positive predictive value of 0.8930.","PeriodicalId":206312,"journal":{"name":"Anais do XLVIII Seminário Integrado de Software e Hardware (SEMISH 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XLVIII Seminário Integrado de Software e Hardware (SEMISH 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/SEMISH.2021.15815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the popularization of social networks, the sharing and consumption of content in video format becomes easier. Understanding what makes a video popular and being able to predict its popularity in number of views is useful for both content creators and advertising. In this work, we explore visual features extracted from 1,820 Facebook videos in order to predict whether they will reach more than a certain number of views on the seven days after publication. For this purpose, we used Support Vector Machine with Gaussian Radial Basis Function classification model. Using only visual features as predictors, the model with Video Characteristics and Rigidity features combined reached Kappa of 0.7324, sensitivity of 0.8930, and positive predictive value of 0.8930.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用支持向量机分类器通过视觉特征预测Facebook视频的受欢迎程度
随着社交网络的普及,视频格式内容的分享和消费变得更加容易。了解是什么让一个视频受欢迎,并能够预测其受欢迎的观看次数,这对内容创作者和广告都很有用。在这项工作中,我们探索了从1820个Facebook视频中提取的视觉特征,以预测它们在发布后七天内是否会达到一定数量的观看量。为此,我们使用支持向量机与高斯径向基函数的分类模型。仅使用视觉特征作为预测因子,结合Video Characteristics和刚度特征的模型Kappa值为0.7324,灵敏度为0.8930,阳性预测值为0.8930。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Desafios na Gerência de Estacionamentos por Imagem State of the Art on Microservices Autoscaling: An Overview Implementação de um cluster Kubernetes com a plataforma Dojot para Aplicações de Internet das Coisas Classificação de subtipos de câncer de mama: Um estudo baseado em genes representativos Desafios do Processamento de Alto Desempenho
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1