Density Based Algorithm for Spatiotemporal Data

Mohd. Yousuf Ansari, Mainuddin, Anand Prakash
{"title":"Density Based Algorithm for Spatiotemporal Data","authors":"Mohd. Yousuf Ansari, Mainuddin, Anand Prakash","doi":"10.1109/ICCCIS48478.2019.8974471","DOIUrl":null,"url":null,"abstract":"Clustering is a method to discover inherent natural structure in a set of objects involved in any phenomenon. In this study, we extended DBSCAN algorithm for spatiotemporal data by defining attribute based mass function, density function and hence modifying definition of core objects for clustering. The proposed work generalizes the concept of using an attribute to define notion of relative importance of an object to define density in the dataset. We have used a real fire dataset to validate the proposed approach. We also compare our algorithm with DBSCAN based algorithm which is extended for spatiotemporal data. The experimental results reveal that our proposed algorithm is able to identify intrinsic information based hidden clusters, which DBSCAN based algorithm is unable to identify.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is a method to discover inherent natural structure in a set of objects involved in any phenomenon. In this study, we extended DBSCAN algorithm for spatiotemporal data by defining attribute based mass function, density function and hence modifying definition of core objects for clustering. The proposed work generalizes the concept of using an attribute to define notion of relative importance of an object to define density in the dataset. We have used a real fire dataset to validate the proposed approach. We also compare our algorithm with DBSCAN based algorithm which is extended for spatiotemporal data. The experimental results reveal that our proposed algorithm is able to identify intrinsic information based hidden clusters, which DBSCAN based algorithm is unable to identify.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于密度的时空数据算法
聚类是一种发现任何现象所涉及的一组对象的内在自然结构的方法。本文通过定义基于属性的质量函数和密度函数,对DBSCAN算法进行了扩展,从而修改了核心对象的聚类定义。提出的工作推广了使用属性来定义对象相对重要性的概念来定义数据集中密度的概念。我们使用了一个真实的火灾数据集来验证所提出的方法。并将该算法与扩展到时空数据的基于DBSCAN的算法进行了比较。实验结果表明,该算法能够识别基于内在信息的隐聚类,这是基于DBSCAN算法无法识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Survey on Stress Emotion Recognition in Speech Weak Form Efficiency Of Currency Futures: Evidence From India YouTube Video Classification based on Title and Description Text SegNet-based Corpus Callosum segmentation for brain Magnetic Resonance Images (MRI) A synchronizer-mediator for lazy replicated databases over a decentralized P2P architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1