Dynamic Spatio-Temporal Modular Network for Video Question Answering

Zi Qian, Xin Wang, Xuguang Duan, Hong Chen, Wenwu Zhu
{"title":"Dynamic Spatio-Temporal Modular Network for Video Question Answering","authors":"Zi Qian, Xin Wang, Xuguang Duan, Hong Chen, Wenwu Zhu","doi":"10.1145/3503161.3548061","DOIUrl":null,"url":null,"abstract":"Video Question Answering (VideoQA) aims to understand given videos and questions comprehensively by generating correct answers. However, existing methods usually rely on end-to-end black-box deep neural networks to infer the answers, which significantly differs from human logic reasoning, thus lacking the ability to explain. Besides, the performances of existing methods tend to drop when answering compositional questions involving realistic scenarios. To tackle these challenges, we propose a Dynamic Spatio-Temporal Modular Network (DSTN) model, which utilizes a spatio-temporal modular network to simulate the compositional reasoning procedure of human beings. Concretely, we divide the task of answering a given question into a set of sub-tasks focusing on certain key concepts in questions and videos such as objects, actions, temporal orders, etc. Each sub-task can be solved with a separately designed module, e.g., spatial attention module, temporal attention module, logic module, and answer module. Then we dynamically assemble different modules assigned with different sub-tasks to generate a tree-structured spatio-temporal modular neural network for human-like reasoning before producing the final answer for the question. We carry out extensive experiments on the AGQA dataset to demonstrate our proposed DSTN model can significantly outperform several baseline methods in various settings. Moreover, we evaluate intermediate results and visualize each reasoning step to verify the rationality of different modules and the explainability of the proposed DSTN model.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Video Question Answering (VideoQA) aims to understand given videos and questions comprehensively by generating correct answers. However, existing methods usually rely on end-to-end black-box deep neural networks to infer the answers, which significantly differs from human logic reasoning, thus lacking the ability to explain. Besides, the performances of existing methods tend to drop when answering compositional questions involving realistic scenarios. To tackle these challenges, we propose a Dynamic Spatio-Temporal Modular Network (DSTN) model, which utilizes a spatio-temporal modular network to simulate the compositional reasoning procedure of human beings. Concretely, we divide the task of answering a given question into a set of sub-tasks focusing on certain key concepts in questions and videos such as objects, actions, temporal orders, etc. Each sub-task can be solved with a separately designed module, e.g., spatial attention module, temporal attention module, logic module, and answer module. Then we dynamically assemble different modules assigned with different sub-tasks to generate a tree-structured spatio-temporal modular neural network for human-like reasoning before producing the final answer for the question. We carry out extensive experiments on the AGQA dataset to demonstrate our proposed DSTN model can significantly outperform several baseline methods in various settings. Moreover, we evaluate intermediate results and visualize each reasoning step to verify the rationality of different modules and the explainability of the proposed DSTN model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向视频问答的动态时空模块化网络
视频问答(VideoQA)旨在通过生成正确的答案来全面理解给定的视频和问题。然而,现有的方法通常依靠端到端黑箱深度神经网络来推断答案,这与人类的逻辑推理有很大的不同,因此缺乏解释能力。此外,在回答涉及现实场景的作文题时,现有方法的性能往往会下降。为了解决这些问题,我们提出了一个动态时空模块化网络(DSTN)模型,该模型利用时空模块化网络来模拟人类的组合推理过程。具体来说,我们将回答给定问题的任务划分为一组子任务,重点关注问题和视频中的某些关键概念,如对象、动作、时间顺序等。每个子任务都可以通过单独设计的模块来解决,如空间注意模块、时间注意模块、逻辑模块、答案模块等。然后,在生成问题的最终答案之前,我们动态地组装分配给不同子任务的不同模块,以生成一个树状结构的时空模块化神经网络,用于类人推理。我们在AGQA数据集上进行了大量的实验,以证明我们提出的DSTN模型在各种设置下可以显着优于几种基线方法。此外,我们对中间结果进行评估,并将每个推理步骤可视化,以验证不同模块的合理性和所提出的DSTN模型的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1