Digital Transformation and Cybersecurity Challenges

Fatimah Al Obaidan, Saqib Saeed
{"title":"Digital Transformation and Cybersecurity Challenges","authors":"Fatimah Al Obaidan, Saqib Saeed","doi":"10.4018/978-1-7998-6975-7.ch011","DOIUrl":null,"url":null,"abstract":"Digital transformation has revolutionized human life but also brought many cybersecurity challenges for users and enterprises. The major threats that affect computers and communication systems by damaging devices and stealing sensitive information are malicious attacks. Traditional anti-virus software fails to detect advanced kind of malware. Current research focuses on developing machine learning techniques for malware detection to respond in a timely manner. Many systems have been evolved and improved to distinguish the malware based on analysis behavior. The analysis behavior is considered a robust technique to detect, analyze, and classify malware, categorized into two models: a static and dynamic analysis. Both types of previous analysis have advantages and limitations. Therefore, the hybrid method combines the strength of static and dynamic analyses. This chapter conducted a systematic literature review (SLR) to summarize and analyze the quality of published studies in malware detection using machine learning techniques and hybrid analysis that range from 2016 to 2021.","PeriodicalId":382999,"journal":{"name":"Handbook of Research on Advancing Cybersecurity for Digital Transformation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Advancing Cybersecurity for Digital Transformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-6975-7.ch011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Digital transformation has revolutionized human life but also brought many cybersecurity challenges for users and enterprises. The major threats that affect computers and communication systems by damaging devices and stealing sensitive information are malicious attacks. Traditional anti-virus software fails to detect advanced kind of malware. Current research focuses on developing machine learning techniques for malware detection to respond in a timely manner. Many systems have been evolved and improved to distinguish the malware based on analysis behavior. The analysis behavior is considered a robust technique to detect, analyze, and classify malware, categorized into two models: a static and dynamic analysis. Both types of previous analysis have advantages and limitations. Therefore, the hybrid method combines the strength of static and dynamic analyses. This chapter conducted a systematic literature review (SLR) to summarize and analyze the quality of published studies in malware detection using machine learning techniques and hybrid analysis that range from 2016 to 2021.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字化转型与网络安全挑战
数字化转型给人类生活带来了革命性的变化,但也给用户和企业带来了许多网络安全挑战。通过破坏设备和窃取敏感信息来影响计算机和通信系统的主要威胁是恶意攻击。传统的杀毒软件无法检测出高级的恶意软件。目前的研究重点是开发用于恶意软件检测的机器学习技术,以便及时响应。许多系统已经发展和改进,以区分基于分析行为的恶意软件。分析行为被认为是一种检测、分析和分类恶意软件的健壮技术,分为两种模型:静态分析和动态分析。前面两种分析都有各自的优点和局限性。因此,混合方法结合了静态和动态分析的强度。本章进行了系统的文献综述(SLR),以总结和分析2016年至2021年期间使用机器学习技术和混合分析进行恶意软件检测的已发表研究的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Cyber Security and Internet of Things for Digital Transformations of the Indian Healthcare Sector Advancing Cybersecurity for Digital Transformation Evolution of Malware in the Digital Transformation Age The Advancing Cybersecurity Ecosystem of Israel A Study of Advancing E-Banking and Cybersecurity for Digital Enterprise Transformation in Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1