Learning design rules and concepts for examples-a case study to design an electric power substation design

Y.B. Mahdy, E. Stanek, M. Abdel-Salam, M. Zaki
{"title":"Learning design rules and concepts for examples-a case study to design an electric power substation design","authors":"Y.B. Mahdy, E. Stanek, M. Abdel-Salam, M. Zaki","doi":"10.1109/IAS.1991.178016","DOIUrl":null,"url":null,"abstract":"Some principles of machine learning and some links with knowledge base system are described. A domain-independent inductive learning system (ILS) has been developed and implemented. ILS can be attached to any expert system, and will work as a knowledge acquisition module for the expert system. This gives the expert system the ability to update and expand its knowledge base according to the circumstances. ILS is a logic-based, data-driven learning system, focusing on the problem of learning structural descriptions. ILS is tailored to design electrical system components. In the present work, ILS is used for specifying the major components of an electrical substation. The learning system will learn design rules and concepts from positive and negative examples in the form of existing substations. This system will take examples and generate rules and concepts for specifying the major components of an electric substation.<<ETX>>","PeriodicalId":294244,"journal":{"name":"Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.1991.178016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Some principles of machine learning and some links with knowledge base system are described. A domain-independent inductive learning system (ILS) has been developed and implemented. ILS can be attached to any expert system, and will work as a knowledge acquisition module for the expert system. This gives the expert system the ability to update and expand its knowledge base according to the circumstances. ILS is a logic-based, data-driven learning system, focusing on the problem of learning structural descriptions. ILS is tailored to design electrical system components. In the present work, ILS is used for specifying the major components of an electrical substation. The learning system will learn design rules and concepts from positive and negative examples in the form of existing substations. This system will take examples and generate rules and concepts for specifying the major components of an electric substation.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以学习设计规则和概念为例——以变电站设计为例
介绍了机器学习的一些原理以及与知识库系统的联系。开发并实现了一个领域独立的归纳学习系统(ILS)。ILS可以附加到任何专家系统上,作为专家系统的知识获取模块。这使专家系统能够根据情况更新和扩展其知识库。ILS是一个基于逻辑的、数据驱动的学习系统,专注于学习结构描述的问题。ILS专门设计电气系统组件。在本工作中,ILS用于指定变电站的主要部件。学习系统将从现有变电站的正面和反面例子中学习设计规则和概念。本系统将举例并生成规则和概念,用于指定变电站的主要部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coordinating cascaded surge protection devices: high-low versus low-high Application strategies for AC rolling mill drives Space vector modulation with unity input power factor for forced commutated cycloconverters Analysis of brushless 4-pole three-phase synchronous generator without exciter by finite element method A modular gate drive circuit for insulated gate bipolar transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1