Selectivity estimation for string predicates: overcoming the underestimation problem

S. Chaudhuri, Venkatesh Ganti, L. Gravano
{"title":"Selectivity estimation for string predicates: overcoming the underestimation problem","authors":"S. Chaudhuri, Venkatesh Ganti, L. Gravano","doi":"10.1109/ICDE.2004.1319999","DOIUrl":null,"url":null,"abstract":"Queries with (equality or LIKE) selection predicates over string attributes are widely used in relational databases. However, state-of-the-art techniques for estimating selectivities of string predicates are often biased towards severely underestimating selectivities. We develop accurate selectivity estimators for string predicates that adapt to data and query characteristics, and which can exploit and build on a variety of existing estimators. A thorough experimental evaluation over real data sets demonstrates the resilience of our estimators to variations in both data and query characteristics.","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"2 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1319999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

Queries with (equality or LIKE) selection predicates over string attributes are widely used in relational databases. However, state-of-the-art techniques for estimating selectivities of string predicates are often biased towards severely underestimating selectivities. We develop accurate selectivity estimators for string predicates that adapt to data and query characteristics, and which can exploit and build on a variety of existing estimators. A thorough experimental evaluation over real data sets demonstrates the resilience of our estimators to variations in both data and query characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
字符串谓词的选择性估计:克服低估问题
对字符串属性使用(相等或LIKE)选择谓词的查询在关系数据库中广泛使用。然而,用于估计字符串谓词选择性的最新技术往往倾向于严重低估选择性。我们开发了适合数据和查询特征的字符串谓词的精确选择性估计器,并且可以利用和构建各种现有的估计器。对真实数据集的彻底实验评估证明了我们的估计器对数据和查询特征变化的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ContextMetrics/sup /spl trade//: semantic and syntactic interoperability in cross-border trading systems EShopMonitor: a Web content monitoring tool A probabilistic approach to metasearching with adaptive probing Simple, robust and highly concurrent b-trees with node deletion Substructure clustering on sequential 3d object datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1