Examplar-Based Speechwaveform Generation for Text-To-Speech

Cassia Valentini-Botinhao, O. Watts, Felipe Espic, Simon King
{"title":"Examplar-Based Speechwaveform Generation for Text-To-Speech","authors":"Cassia Valentini-Botinhao, O. Watts, Felipe Espic, Simon King","doi":"10.1109/SLT.2018.8639679","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid text-to-speech framework that uses a waveform generation method based on examplars of natural speech waveform. These examplars are selected at synthesis time given a sequence of acoustic features generated from text by a statistical parametric speech synthesis model. In order to match the expected degradation of these target synthesis features, the database of units is constructed such that the units’ target representations are generated from the same parametric model. We evaluate two variants of this framework by modifying the size of the examplar: a small unit variant (where unit boundaries are determined by pitch mark location) and a halfphone variant (where unit boundaries are determined by subphone state forced alignment). We found that for a larger dataset (around four hours of training data) the examplar-based waveform generation variants are rated higher than the vocoder-based system.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a hybrid text-to-speech framework that uses a waveform generation method based on examplars of natural speech waveform. These examplars are selected at synthesis time given a sequence of acoustic features generated from text by a statistical parametric speech synthesis model. In order to match the expected degradation of these target synthesis features, the database of units is constructed such that the units’ target representations are generated from the same parametric model. We evaluate two variants of this framework by modifying the size of the examplar: a small unit variant (where unit boundaries are determined by pitch mark location) and a halfphone variant (where unit boundaries are determined by subphone state forced alignment). We found that for a larger dataset (around four hours of training data) the examplar-based waveform generation variants are rated higher than the vocoder-based system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本到语音的基于示例的语音波形生成
本文提出了一种混合文本-语音框架,该框架使用基于自然语音波形示例的波形生成方法。这些例子是在合成时根据统计参数语音合成模型从文本中生成的声学特征序列选择的。为了匹配这些目标综合特征的预期退化,构建了单元数据库,使单元的目标表示由相同的参数模型生成。我们通过修改示例的大小来评估该框架的两种变体:小单位变体(其中单位边界由音高标记位置决定)和半电话变体(其中单位边界由子电话状态强制对齐决定)。我们发现,对于更大的数据集(大约4小时的训练数据),基于示例的波形生成变体的评级高于基于声码器的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sequence Teacher-Student Training of Acoustic Models for Automatic Free Speaking Language Assessment Leveraging Sequence-to-Sequence Speech Synthesis for Enhancing Acoustic-to-Word Speech Recognition Dynamic Extension of ASR Lexicon Using Wikipedia Data Detection and Calibration of Whisper for Speaker Recognition Out-of-Domain Slot Value Detection for Spoken Dialogue Systems with Context Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1