Aligning automatically generated questions to instructor goals and learner behaviour

Lydia Odilinye, F. Popowich, Evan Zhang, J. Nesbit, P. Winne
{"title":"Aligning automatically generated questions to instructor goals and learner behaviour","authors":"Lydia Odilinye, F. Popowich, Evan Zhang, J. Nesbit, P. Winne","doi":"10.1109/ICOSC.2015.7050809","DOIUrl":null,"url":null,"abstract":"Automatic question generation from text has been used and adapted to online and self-directed learning platforms. We incorporate methods into the automatic question generation process that are designed to improve question quality by aligning them to the specified pedagogical goals and to a learner's model. This is achieved by extracting, ranking and filtering relevant sentences in the given learning document as well as the questions automatically generated by their semantic associations to the learner model and instructor goals. We propose evaluation techniques for assessing the quality of the questions generated using both human and automatic evaluation.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Automatic question generation from text has been used and adapted to online and self-directed learning platforms. We incorporate methods into the automatic question generation process that are designed to improve question quality by aligning them to the specified pedagogical goals and to a learner's model. This is achieved by extracting, ranking and filtering relevant sentences in the given learning document as well as the questions automatically generated by their semantic associations to the learner model and instructor goals. We propose evaluation techniques for assessing the quality of the questions generated using both human and automatic evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将自动生成的问题与教师的目标和学习者的行为相一致
从文本中自动生成问题已用于在线和自主学习平台。我们将方法整合到自动问题生成过程中,旨在通过使问题与指定的教学目标和学习者模型保持一致来提高问题质量。这是通过提取、排序和过滤给定学习文档中的相关句子,以及由它们与学习者模型和教师目标的语义关联自动生成的问题来实现的。我们提出了评估技术来评估使用人工和自动评估生成的问题的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NNB: An efficient nearest neighbor search method for hierarchical clustering on large datasets Aggregating financial services data without assumptions: A semantic data reference architecture Reducing search space for Web Service ranking using semantic logs and Semantic FP-Tree based association rule mining An approximation of betweenness centrality for Social Networks Performance analysis of Ensemble methods on Twitter sentiment analysis using NLP techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1