Felipe PInto Marinho, Juliana Silva Brasil, Paulo Alexandre Costa Rocha, Maria Eugênia Vieira da Silva, Juarez Pompeu de Amorim Neto
{"title":"INFLUÊNCIA DOS FENÔMENOS CLIMÁTICOS DO EL NIÑO E DA LA NIÑA NA PREVISÃO DA MÉDIA DIÁRIA DE IRRADIAÇÃO GLOBAL NA CIDADE DE FORTALEZA","authors":"Felipe PInto Marinho, Juliana Silva Brasil, Paulo Alexandre Costa Rocha, Maria Eugênia Vieira da Silva, Juarez Pompeu de Amorim Neto","doi":"10.47820/acertte.v2i2.53","DOIUrl":null,"url":null,"abstract":"Neste trabalho, previsões da média diária de irradiação solar global foram obtidas pela aplicação de algoritmos de aprendizagem de máquina em dois conjuntos de dados formados por variáveis exógenas (insolação, temperatura do ar, precipitação, etc), variáveis endógenas (série temporal da média diária de irradiação solar global) e variáveis temporais (ano, mês e dia da medição). A diferença entre os conjuntos de dados está relacionada ao fato de que em um se considera as intensidades dos fenômenos climáticos do El Niño e da La Niña como preditores para os modelos de aprendizagem utilizados, enquanto no outro não se considera. Desta forma, foi possível avaliar se a adição do preditor relacionado ao El Niño/La Niña contribui para uma melhor acurácia de previsão por parte dos modelos aplicados: Máquina de Aprendizagem Mínima, Regressão por Vetor Suporte, Florestas Aleatórias, K-Vizinhos mais Próximos e uma árvore de regressão com o uso de Bootstrap. As métricas de erro Erro Médio Absoluto, Erro de Viés Médio, Raiz do Erro Quadrático Médio, Raiz do Erro Quadrático Médio Relativo e Habilidade de Previsão foram utilizadas para a análise do desempenho dos algoritmos. A média aritmética da Raiz do Erro Quadrático Médio e da Habilidade de Previsão para o caso em que se considerou o El Niño/La Niña como atibutos foram de 40.78 W/m² e 7,87% , respectivamente. Já para o caso em que não se considera tais preditores os valores obtidos foram de 40.86 W/m² e 7.69%. Indicando que o uso destes preditores aumenta a acurácia de previsão dos algoritmos em questão.","PeriodicalId":412396,"journal":{"name":"REVISTA CIENTÍFICA ACERTTE - ISSN 2763-8928","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"REVISTA CIENTÍFICA ACERTTE - ISSN 2763-8928","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47820/acertte.v2i2.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neste trabalho, previsões da média diária de irradiação solar global foram obtidas pela aplicação de algoritmos de aprendizagem de máquina em dois conjuntos de dados formados por variáveis exógenas (insolação, temperatura do ar, precipitação, etc), variáveis endógenas (série temporal da média diária de irradiação solar global) e variáveis temporais (ano, mês e dia da medição). A diferença entre os conjuntos de dados está relacionada ao fato de que em um se considera as intensidades dos fenômenos climáticos do El Niño e da La Niña como preditores para os modelos de aprendizagem utilizados, enquanto no outro não se considera. Desta forma, foi possível avaliar se a adição do preditor relacionado ao El Niño/La Niña contribui para uma melhor acurácia de previsão por parte dos modelos aplicados: Máquina de Aprendizagem Mínima, Regressão por Vetor Suporte, Florestas Aleatórias, K-Vizinhos mais Próximos e uma árvore de regressão com o uso de Bootstrap. As métricas de erro Erro Médio Absoluto, Erro de Viés Médio, Raiz do Erro Quadrático Médio, Raiz do Erro Quadrático Médio Relativo e Habilidade de Previsão foram utilizadas para a análise do desempenho dos algoritmos. A média aritmética da Raiz do Erro Quadrático Médio e da Habilidade de Previsão para o caso em que se considerou o El Niño/La Niña como atibutos foram de 40.78 W/m² e 7,87% , respectivamente. Já para o caso em que não se considera tais preditores os valores obtidos foram de 40.86 W/m² e 7.69%. Indicando que o uso destes preditores aumenta a acurácia de previsão dos algoritmos em questão.