{"title":"Deep Learning Radio Frequency Signal Classification with Hybrid Images","authors":"Hilal Elyousseph, M. Altamimi","doi":"10.1109/ICSIPA52582.2021.9576786","DOIUrl":null,"url":null,"abstract":"In recent years, Deep Learning (DL) has been successfully applied to detect and classify Radio Frequency (RF) Signals. A DL approach is especially useful since it identifies the presence of a signal without needing full protocol information, and can also detect and/or classify non-communication waveforms, such as radar signals. This work focuses on the different pre-processing steps that can be used on the input training data, and tests the results on a fixed DL architecture. While previous works have mostly focused exclusively on either time-domain or frequency domain approaches, in this work a hybrid image is proposed that takes advantage of both time and frequency domain information, and tackles the classification as a Computer Vision problem. The initial results point out limitations to classical pre-processing approaches while also showing that it’s possible to build a classifier that can leverage the strengths of multiple signal representations.","PeriodicalId":326688,"journal":{"name":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA52582.2021.9576786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years, Deep Learning (DL) has been successfully applied to detect and classify Radio Frequency (RF) Signals. A DL approach is especially useful since it identifies the presence of a signal without needing full protocol information, and can also detect and/or classify non-communication waveforms, such as radar signals. This work focuses on the different pre-processing steps that can be used on the input training data, and tests the results on a fixed DL architecture. While previous works have mostly focused exclusively on either time-domain or frequency domain approaches, in this work a hybrid image is proposed that takes advantage of both time and frequency domain information, and tackles the classification as a Computer Vision problem. The initial results point out limitations to classical pre-processing approaches while also showing that it’s possible to build a classifier that can leverage the strengths of multiple signal representations.