Subspace and motion segmentation via local subspace estimation

A. Sekmen, A. Aldroubi
{"title":"Subspace and motion segmentation via local subspace estimation","authors":"A. Sekmen, A. Aldroubi","doi":"10.1109/WORV.2013.6521909","DOIUrl":null,"url":null,"abstract":"Subspace segmentation and clustering of high dimensional data drawn from a union of subspaces are important with practical robot vision applications, such as smart airborne video surveillance. This paper presents a clustering algorithm for high dimensional data that comes from a union of lower dimensional subspaces of equal and known dimensions. Rigid motion segmentation is a special case of this more general subspace segmentation problem. The algorithm matches a local subspace for each trajectory vector and estimates the relationships between trajectories. It is reliable in the presence of noise, and it has been experimentally verified by the Hopkins 155 Dataset.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Subspace segmentation and clustering of high dimensional data drawn from a union of subspaces are important with practical robot vision applications, such as smart airborne video surveillance. This paper presents a clustering algorithm for high dimensional data that comes from a union of lower dimensional subspaces of equal and known dimensions. Rigid motion segmentation is a special case of this more general subspace segmentation problem. The algorithm matches a local subspace for each trajectory vector and estimates the relationships between trajectories. It is reliable in the presence of noise, and it has been experimentally verified by the Hopkins 155 Dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部子空间估计的子空间和运动分割
子空间分割和从子空间联合中提取高维数据的聚类对于实际机器人视觉应用,如智能机载视频监控,是非常重要的。本文提出了一种高维数据聚类算法,这些高维数据来自于维数相等且已知的低维子空间的并集。刚性运动分割是这种更普遍的子空间分割问题的一种特殊情况。该算法为每个轨迹向量匹配一个局部子空间,并估计轨迹之间的关系。它在存在噪声的情况下是可靠的,并且已经通过霍普金斯155数据集的实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated tuning of the nonlinear complementary filter for an Attitude Heading Reference observer Sensitivity evaluation of embedded code detection in imperceptible structured light sensing Fast iterative five point relative pose estimation A wireless robotic video laparo-endoscope for minimal invasive surgery Rapid explorative direct inverse kinematics learning of relevant locations for active vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1