Voronoi representation for areal data processing in data-rich environments

D. Breitkreutz, Ickjai Lee
{"title":"Voronoi representation for areal data processing in data-rich environments","authors":"D. Breitkreutz, Ickjai Lee","doi":"10.1109/ISI.2009.5137291","DOIUrl":null,"url":null,"abstract":"Privacy and data explosion issues are major concerns in intelligence and security informatics. An areal data representation is a popular way to overcome these two issues. As data grows at an unprecedented rate, there still needs an improvement in area data representations to be more scalable. This paper determines the potential for an alternative areal representation that can offer performance benefits over traditional methods for use within data-rich environments. From the experiments performed, improvements are promising, especially within time-critical applications that need to consider large amounts of data quickly.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Privacy and data explosion issues are major concerns in intelligence and security informatics. An areal data representation is a popular way to overcome these two issues. As data grows at an unprecedented rate, there still needs an improvement in area data representations to be more scalable. This paper determines the potential for an alternative areal representation that can offer performance benefits over traditional methods for use within data-rich environments. From the experiments performed, improvements are promising, especially within time-critical applications that need to consider large amounts of data quickly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在数据丰富的环境中进行实际数据处理的Voronoi表示
隐私和数据爆炸问题是情报和安全信息学的主要关注点。实景数据表示是克服这两个问题的常用方法。随着数据以前所未有的速度增长,区域数据表示仍然需要改进,以提高可扩展性。本文确定了在数据丰富的环境中使用一种可以提供优于传统方法的替代区域表示的潜力。从所进行的实验来看,改进是有希望的,特别是在需要快速考虑大量数据的时间关键应用程序中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1