Effectiveness of Minor Overhaul Elimination on Decreasing Cost of Production in Hydroelectric Power Plant

Rahmania Prasyayudha, Sabar Setyawidayat, Fachruddin Hunaini
{"title":"Effectiveness of Minor Overhaul Elimination on Decreasing Cost of Production in Hydroelectric Power Plant","authors":"Rahmania Prasyayudha, Sabar Setyawidayat, Fachruddin Hunaini","doi":"10.21070/jeeeu.v5i1.1228","DOIUrl":null,"url":null,"abstract":"The projection of the renewable energy target in 2025 is 23%. The high production cost makes it difficult to compete with fossil plants. The strategy chosen to reduce the risk is to eliminate minor overhauls in power plants to increase production. To prove its effectiveness, hydropower was chosen by using markov chain method. It took samples for 26 months and divided plant into 3 states based on the operating performance. The test was between implementation of overhauls on schedule and eliminating minor overhauls when the status was good. The results of data processing obtained that the best decision is not to do minor overhaul elimination because of the potential to reduce 29.77% good conditions, 30.69% improvement in moderate conditions. Comparison between the 2017-2019 data show there’s no production cost reduction even though potential production increase. Calculation can be implemented into a web form using the PHP on the Laravel Framework","PeriodicalId":320287,"journal":{"name":"JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21070/jeeeu.v5i1.1228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The projection of the renewable energy target in 2025 is 23%. The high production cost makes it difficult to compete with fossil plants. The strategy chosen to reduce the risk is to eliminate minor overhauls in power plants to increase production. To prove its effectiveness, hydropower was chosen by using markov chain method. It took samples for 26 months and divided plant into 3 states based on the operating performance. The test was between implementation of overhauls on schedule and eliminating minor overhauls when the status was good. The results of data processing obtained that the best decision is not to do minor overhaul elimination because of the potential to reduce 29.77% good conditions, 30.69% improvement in moderate conditions. Comparison between the 2017-2019 data show there’s no production cost reduction even though potential production increase. Calculation can be implemented into a web form using the PHP on the Laravel Framework
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水电厂小修取消对降低生产成本的效果
预计2025年可再生能源目标为23%。高生产成本使其难以与化石燃料工厂竞争。降低风险的策略是取消发电厂的小检修以增加产量。为了证明其有效性,采用马尔可夫链方法对水电进行了选择。取样时间为26个月,根据工厂的运行情况将工厂分为3个州。测试是在按计划实施大修和在状态良好时取消小的大修之间进行的。数据处理结果得出,最佳决策是不做小修淘汰,因为良好条件下潜力降低29.77%,中等条件下潜力提高30.69%。2017-2019年的数据对比显示,尽管潜在的产量增加,但生产成本并没有降低。计算可以在Laravel框架上使用PHP实现到web表单中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leak Monitoring in Split Duct Air Conditioner Based on Internet of Things Design of a Height and Weight Measurement Tool for Toddlers at Spreadsheet-Based Posyandu The Protection Relay Coordination Studies (Over Current Relays and Ground Fault Relays) On The Power Plant Electrical System, PT. Rekind Daya Mamuju By Using The ETAP 12.6 Program Design of Atmega2560 Charge Controller Battery Using Static Bicycle Sistem Monitoring Dan Kontrol Motor Listrik Industri Menggunakan Internet Of Things (IoT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1