Generative Aging Of Brain MRI For Early Prediction Of MCI-AD Conversion

Viktor Wegmayr, Maurice Hörold, J. Buhmann
{"title":"Generative Aging Of Brain MRI For Early Prediction Of MCI-AD Conversion","authors":"Viktor Wegmayr, Maurice Hörold, J. Buhmann","doi":"10.1109/ISBI.2019.8759394","DOIUrl":null,"url":null,"abstract":"Automatic diagnosis of Alzheimer’s disease (AD) from MR images of the brain promises to yield important information of a patient’s disease status or even early prediction of disease onset. This work investigates deep learning based methods to predict conversion of Mild Cognitive Impairment (MCI) to AD based on widely available T1-weighted MR brain images. We present a novel approach breaking up the conversion prediction into a generative and a discriminative step. Using the recently proposed Wasserstein-GAN model, we generate a synthetically aged brain image given a baseline image. The aged image is passed to an MCI/AD discriminator deciding the future disease status. Using only one coronal slice of a patient’s baseline T1image, our approach achieves 73% accuracy, 68% precision, and 75% recall on MCI-to-AD conversion prediction at a 48months follow-up.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Automatic diagnosis of Alzheimer’s disease (AD) from MR images of the brain promises to yield important information of a patient’s disease status or even early prediction of disease onset. This work investigates deep learning based methods to predict conversion of Mild Cognitive Impairment (MCI) to AD based on widely available T1-weighted MR brain images. We present a novel approach breaking up the conversion prediction into a generative and a discriminative step. Using the recently proposed Wasserstein-GAN model, we generate a synthetically aged brain image given a baseline image. The aged image is passed to an MCI/AD discriminator deciding the future disease status. Using only one coronal slice of a patient’s baseline T1image, our approach achieves 73% accuracy, 68% precision, and 75% recall on MCI-to-AD conversion prediction at a 48months follow-up.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
早期预测MCI-AD转换的脑MRI生成老化
从脑磁共振图像中自动诊断阿尔茨海默病(AD)有望获得患者疾病状态的重要信息,甚至是疾病发作的早期预测。这项工作研究了基于深度学习的方法,以预测基于广泛可用的t1加权MR脑图像的轻度认知障碍(MCI)向AD的转换。我们提出了一种新的方法,将转换预测分为生成步骤和判别步骤。使用最近提出的Wasserstein-GAN模型,我们在给定基线图像的情况下生成了一个综合老化的大脑图像。老化的图像被传递给MCI/AD鉴别器,以确定未来的疾病状态。在48个月的随访中,仅使用患者基线t1图像的一张冠状面切片,我们的方法在mci到ad转换预测中达到73%的准确度,68%的精密度和75%的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1