Iteratively Locating Voronoi Vertices for Dispersion Estimation

Stephen R. Lindemann, P. Cheng
{"title":"Iteratively Locating Voronoi Vertices for Dispersion Estimation","authors":"Stephen R. Lindemann, P. Cheng","doi":"10.1109/ROBOT.2005.1570710","DOIUrl":null,"url":null,"abstract":"We present a new sampling-based algorithm for iteratively locating Voronoi vertices of a point set in the unit cube Id= [0, 1]d. The algorithm takes an input sample and executes a series of transformations, each of which projects the sample to a new face of the Voronoi cell in which it is located. After d such transformations, the sample has been transformed into a Voronoi vertex. Locating Voronoi vertices has many potential applications for motion planning, such as estimating dispersion for coverage and verification applications, and providing information useful for Voronoi-biased or multiple-tree planning. We prove theoretical results regarding our algorithm, and give experimental results comparing it to naive sampling for the problem of dispersion estimation.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a new sampling-based algorithm for iteratively locating Voronoi vertices of a point set in the unit cube Id= [0, 1]d. The algorithm takes an input sample and executes a series of transformations, each of which projects the sample to a new face of the Voronoi cell in which it is located. After d such transformations, the sample has been transformed into a Voronoi vertex. Locating Voronoi vertices has many potential applications for motion planning, such as estimating dispersion for coverage and verification applications, and providing information useful for Voronoi-biased or multiple-tree planning. We prove theoretical results regarding our algorithm, and give experimental results comparing it to naive sampling for the problem of dispersion estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散估计中Voronoi顶点的迭代定位
我们提出了一种新的基于采样的算法,用于迭代定位单位立方体Id= [0,1]d中点集的Voronoi顶点。该算法获取一个输入样本并执行一系列转换,每个转换将样本投影到它所在的Voronoi细胞的新面。经过d次这样的变换后,样本被转换为Voronoi顶点。定位Voronoi顶点在运动规划中有许多潜在的应用,例如估计覆盖和验证应用的分散,并为Voronoi偏倚或多树规划提供有用的信息。我们证明了该算法的理论结果,并给出了与原始采样方法比较的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis and Fault Tolerant Control for Wheeled Mobile Robots under Unknown Environments: A Survey Clamping Tools of a Capsule for Monitoring the Gastrointestinal Tract Problem Analysis and Preliminary Technological Activity A Fixed– Camera Controller for Visual Guidance of Mobile Robots via Velocity Fields Insect-like Antennal Sensing for Climbing and Tunneling Behavior in a Biologically-inspired Mobile Robot Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1