Optimal Reactive Power Dispatch Using Quasi-Oppositional Biogeography-Based Optimization

P. Roy, D. Mandal
{"title":"Optimal Reactive Power Dispatch Using Quasi-Oppositional Biogeography-Based Optimization","authors":"P. Roy, D. Mandal","doi":"10.4018/ijeoe.2012100103","DOIUrl":null,"url":null,"abstract":"In this paper, quasi-oppositional biogeography based-optimization (QOBBO) for optimal reactive power dispatch (ORPD) is presented. The proposed methodology determines control variable settings such as generator terminal voltages, tap positions of the regulating transformer and the Var injection of the shunts compensator, for real power loss minimization in the transmission system. The algorithm’s performance is studied with comparisons of canonical genetic algorithm (CGA), five versions of particle swarm optimization (PSO), local search based self-adaptive differential evolution (L-SADE), seeker optimization algorithm (SOA), biogeography based optimization (BBO) on the IEEE 30-bus and IEEE 57-bus power systems. The simulation results show that the proposed QOBBO approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2012100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, quasi-oppositional biogeography based-optimization (QOBBO) for optimal reactive power dispatch (ORPD) is presented. The proposed methodology determines control variable settings such as generator terminal voltages, tap positions of the regulating transformer and the Var injection of the shunts compensator, for real power loss minimization in the transmission system. The algorithm’s performance is studied with comparisons of canonical genetic algorithm (CGA), five versions of particle swarm optimization (PSO), local search based self-adaptive differential evolution (L-SADE), seeker optimization algorithm (SOA), biogeography based optimization (BBO) on the IEEE 30-bus and IEEE 57-bus power systems. The simulation results show that the proposed QOBBO approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拟对抗生物地理的最优无功调度
提出了一种基于准对抗生物地理的最优无功调度优化方法。提出的方法确定控制变量设置,如发电机端子电压,调节变压器的分接位置和并联补偿器的无功注入,以实现输电系统中实际功率损失的最小化。通过比较经典遗传算法(CGA)、五种版本的粒子群优化(PSO)、基于局部搜索的自适应差分进化(L-SADE)、导引头优化算法(SOA)、基于生物地理的优化算法(BBO)在IEEE 30总线和IEEE 57总线电力系统上的性能,研究了该算法的性能。仿真结果表明,所提出的QOBBO方法比其他列出的算法性能更好,可以有效地用于ORPD问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Site Selection for Solar Photovoltaic Power Plant in North Eastern State of India using Hybrid MCDM Tools Security Constrained Optimal Reactive Power Dispatch Using Hybrid Particle Swarm Optimization and Differential Evolution Visible Light Communication System for Indoor Positioning Using Solar Cell as Receiver A New Central Control Scheme for Future Micro-Grid Systems Considering Variable Speed Drive Systems and Fuzzy Logic Control System Comparative Study of Two Different Converters with its Controller for Grid Connected WECS with PMSG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1